Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"autonomous cars": models, code, and papers

Rethinking Task and Metrics of Instance Segmentation on 3D Point Clouds

Sep 27, 2019
Kosuke Arase, Yusuke Mukuta, Tatsuya Harada

Instance segmentation on 3D point clouds is one of the most extensively researched areas toward the realization of autonomous cars and robots. Certain existing studies have split input point clouds into small regions such as 1m x 1m; one reason for this is that models in the studies cannot consume a large number of points because of the large space complexity. However, because such small regions occasionally include a very small number of instances belonging to the same class, an evaluation using existing metrics such as mAP is largely affected by the category recognition performance. To address these problems, we propose a new method with space complexity O(Np) such that large regions can be consumed, as well as novel metrics for tasks that are independent of the categories or size of the inputs. Our method learns a mapping from input point clouds to an embedding space, where the embeddings form clusters for each instance and distinguish instances using these clusters during testing. Our method achieves state-of-the-art performance using both existing and the proposed metrics. Moreover, we show that our new metric can evaluate the performance of a task without being affected by any other condition.

* The 4th Workshop on Geometry Meets Deep Learning (ICCV Workshop 2019) 

Verifying Quantized Neural Networks using SMT-Based Model Checking

Jun 10, 2021
Luiz Sena, Xidan Song, Erickson Alves, Iury Bessa, Edoardo Manino, Lucas Cordeiro

Artificial Neural Networks (ANNs) are being deployed on an increasing number of safety-critical applications, including autonomous cars and medical diagnosis. However, concerns about their reliability have been raised due to their black-box nature and apparent fragility to adversarial attacks. Here, we develop and evaluate a symbolic verification framework using incremental model checking (IMC) and satisfiability modulo theories (SMT) to check for vulnerabilities in ANNs. More specifically, we propose several ANN-related optimizations for IMC, including invariant inference via interval analysis and the discretization of non-linear activation functions. With this, we can provide guarantees on the safe behavior of ANNs implemented both in floating-point and fixed-point (quantized) arithmetic. In this regard, our verification approach was able to verify and produce adversarial examples for 52 test cases spanning image classification and general machine learning applications. For small- to medium-sized ANN, our approach completes most of its verification runs in minutes. Moreover, in contrast to most state-of-the-art methods, our approach is not restricted to specific choices of activation functions or non-quantized representations.


Trajectory Prediction with Latent Belief Energy-Based Model

Apr 07, 2021
Bo Pang, Tianyang Zhao, Xu Xie, Ying Nian Wu

Human trajectory prediction is critical for autonomous platforms like self-driving cars or social robots. We present a latent belief energy-based model (LB-EBM) for diverse human trajectory forecast. LB-EBM is a probabilistic model with cost function defined in the latent space to account for the movement history and social context. The low-dimensionality of the latent space and the high expressivity of the EBM make it easy for the model to capture the multimodality of pedestrian trajectory distributions. LB-EBM is learned from expert demonstrations (i.e., human trajectories) projected into the latent space. Sampling from or optimizing the learned LB-EBM yields a belief vector which is used to make a path plan, which then in turn helps to predict a long-range trajectory. The effectiveness of LB-EBM and the two-step approach are supported by strong empirical results. Our model is able to make accurate, multi-modal, and social compliant trajectory predictions and improves over prior state-of-the-arts performance on the Stanford Drone trajectory prediction benchmark by 10.9% and on the ETH-UCY benchmark by 27.6%.

* 13 pages 

Social and Scene-Aware Trajectory Prediction in Crowded Spaces

Sep 19, 2019
Matteo Lisotto, Pasquale Coscia, Lamberto Ballan

Mimicking human ability to forecast future positions or interpret complex interactions in urban scenarios, such as streets, shopping malls or squares, is essential to develop socially compliant robots or self-driving cars. Autonomous systems may gain advantage on anticipating human motion to avoid collisions or to naturally behave alongside people. To foresee plausible trajectories, we construct an LSTM (long short-term memory)-based model considering three fundamental factors: people interactions, past observations in terms of previously crossed areas and semantics of surrounding space. Our model encompasses several pooling mechanisms to join the above elements defining multiple tensors, namely social, navigation and semantic tensors. The network is tested in unstructured environments where complex paths emerge according to both internal (intentions) and external (other people, not accessible areas) motivations. As demonstrated, modeling paths unaware of social interactions or context information, is insufficient to correctly predict future positions. Experimental results corroborate the effectiveness of the proposed framework in comparison to LSTM-based models for human path prediction.

* Accepted to ICCV 2019 Workshop on Assistive Computer Vision and Robotics (ACVR) 

Restricted Deformable Convolution based Road Scene Semantic Segmentation Using Surround View Cameras

Jan 03, 2018
Liuyuan Deng, Ming Yang, Hao Li, Tianyi Li, Bing Hu, Chunxiang Wang

Understanding the surrounding environment of the vehicle is still one of the challenges for autonomous driving. This paper addresses 360-degree road scene semantic segmentation using surround view cameras, which are widely equipped in existing production cars. First, in order to address large distortion problem in the fisheye images, Restricted Deformable Convolution (RDC) is proposed for semantic segmentation, which can effectively model geometric transformations by learning the shapes of convolutional filters conditioned on the input feature map. Second, in order to obtain a large-scale training set of surround view images, a novel method called zoom augmentation is proposed to transform conventional images to fisheye images. Finally, an RDC based semantic segmentation model is built. The model is trained for real-world surround view images through a multi-task learning architecture by combining real-world images with transformed images. Experiments demonstrate the effectiveness of the RDC to handle images with large distortions, and the proposed approach shows a good performance using surround view cameras with the help of the transformed images.

* Submitted to IEEE Transactions on Intelligent Transportation Systems 

An Intelligent Self-driving Truck System For Highway Transportation

Dec 31, 2021
Dawei Wang, Lingping Gao, Ziquan Lan, Wei Li, Jiaping Ren, Jiahui Zhang, Peng Zhang, Pei Zhou, Shengao Wang, Jia Pan, Dinesh Manocha, Ruigang Yang

Recently, there have been many advances in autonomous driving society, attracting a lot of attention from academia and industry. However, existing works mainly focus on cars, extra development is still required for self-driving truck algorithms and models. In this paper, we introduce an intelligent self-driving truck system. Our presented system consists of three main components, 1) a realistic traffic simulation module for generating realistic traffic flow in testing scenarios, 2) a high-fidelity truck model which is designed and evaluated for mimicking real truck response in real-world deployment, 3) an intelligent planning module with learning-based decision making algorithm and multi-mode trajectory planner, taking into account the truck's constraints, road slope changes, and the surrounding traffic flow. We provide quantitative evaluations for each component individually to demonstrate the fidelity and performance of each part. We also deploy our proposed system on a real truck and conduct real world experiments which shows our system's capacity of mitigating sim-to-real gap. Our code is available at


View Vertically: A Hierarchical Network for Trajectory Prediction via Fourier Spectrums

Oct 14, 2021
Conghao Wong, Beihao Xia, Ziming Hong, Qinmu Peng, Xinge You

Learning to understand and predict future motions or behaviors for agents like humans and robots are critical to various autonomous platforms, such as behavior analysis, robot navigation, and self-driving cars. Intrinsic factors such as agents' diversified personalities and decision-making styles bring rich and diverse changes and multi-modal characteristics to their future plannings. Besides, the extrinsic interactive factors have also brought rich and varied changes to their trajectories. Previous methods mostly treat trajectories as time sequences, and reach great prediction performance. In this work, we try to focus on agents' trajectories in another view, i.e., the Fourier spectrums, to explore their future behavior rules in a novel hierarchical way. We propose the Transformer-based V model, which concatenates two continuous keypoints estimation and spectrum interpolation sub-networks, to model and predict agents' trajectories with spectrums in the keypoints and interactions levels respectively. Experimental results show that V outperforms most of current state-of-the-art methods on ETH-UCY and SDD trajectories dataset for about 15\% quantitative improvements, and performs better qualitative results.


Combined Image- and World-Space Tracking in Traffic Scenes

Sep 19, 2018
Aljosa Osep, Wolfgang Mehner, Markus Mathias, Bastian Leibe

Tracking in urban street scenes plays a central role in autonomous systems such as self-driving cars. Most of the current vision-based tracking methods perform tracking in the image domain. Other approaches, eg based on LIDAR and radar, track purely in 3D. While some vision-based tracking methods invoke 3D information in parts of their pipeline, and some 3D-based methods utilize image-based information in components of their approach, we propose to use image- and world-space information jointly throughout our method. We present our tracking pipeline as a 3D extension of image-based tracking. From enhancing the detections with 3D measurements to the reported positions of every tracked object, we use world-space 3D information at every stage of processing. We accomplish this by our novel coupled 2D-3D Kalman filter, combined with a conceptually clean and extendable hypothesize-and-select framework. Our approach matches the current state-of-the-art on the official KITTI benchmark, which performs evaluation in the 2D image domain only. Further experiments show significant improvements in 3D localization precision by enabling our coupled 2D-3D tracking.

* 8 pages, 7 figures, 2 tables. ICRA 2017 paper 

(AF)2-S3Net: Attentive Feature Fusion with Adaptive Feature Selection for Sparse Semantic Segmentation Network

Feb 08, 2021
Ran Cheng, Ryan Razani, Ehsan Taghavi, Enxu Li, Bingbing Liu

Autonomous robotic systems and self driving cars rely on accurate perception of their surroundings as the safety of the passengers and pedestrians is the top priority. Semantic segmentation is one the essential components of environmental perception that provides semantic information of the scene. Recently, several methods have been introduced for 3D LiDAR semantic segmentation. While, they can lead to improved performance, they are either afflicted by high computational complexity, therefore are inefficient, or lack fine details of smaller instances. To alleviate this problem, we propose AF2-S3Net, an end-to-end encoder-decoder CNN network for 3D LiDAR semantic segmentation. We present a novel multi-branch attentive feature fusion module in the encoder and a unique adaptive feature selection module with feature map re-weighting in the decoder. Our AF2-S3Net fuses the voxel based learning and point-based learning into a single framework to effectively process the large 3D scene. Our experimental results show that the proposed method outperforms the state-of-the-art approaches on the large-scale SemanticKITTI benchmark, ranking 1st on the competitive public leaderboard competition upon publication.

* 10 pages, 6 figures, 4 tables 

Attention-based 3D Object Reconstruction from a Single Image

Aug 11, 2020
Andrey Salvi, Nathan Gavenski, Eduardo Pooch, Felipe Tasoniero, Rodrigo Barros

Recently, learning-based approaches for 3D reconstruction from 2D images have gained popularity due to its modern applications, e.g., 3D printers, autonomous robots, self-driving cars, virtual reality, and augmented reality. The computer vision community has applied a great effort in developing functions to reconstruct the full 3D geometry of objects and scenes. However, to extract image features, they rely on convolutional neural networks, which are ineffective in capturing long-range dependencies. In this paper, we propose to substantially improve Occupancy Networks, a state-of-the-art method for 3D object reconstruction. For such we apply the concept of self-attention within the network's encoder in order to leverage complementary input features rather than those based on local regions, helping the encoder to extract global information. With our approach, we were capable of improving the original work in 5.05% of mesh IoU, 0.83% of Normal Consistency, and more than 10X the Chamfer-L1 distance. We also perform a qualitative study that shows that our approach was able to generate much more consistent meshes, confirming its increased generalization power over the current state-of-the-art.

* International Joint Conference on Neural Networks (IJCNN) - 2020 
* 8 pages, 4 figures, 3 tables