Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Topic": models, code, and papers

COVID-19 Twitter Dataset with Latent Topics, Sentiments and Emotions Attributes

Jul 14, 2020
Raj Kumar Gupta, Ajay Vishwanath, Yinping Yang

This resource paper describes a large dataset covering over 63 million coronavirus-related Twitter posts from more than 13 million unique users since 28 January to 1 July 2020. As strong concerns and emotions are expressed in the tweets, we analyzed the tweets content using natural language processing techniques and machine-learning based algorithms, and inferred seventeen latent semantic attributes associated with each tweet, including 1) ten attributes indicating the tweet's relevance to ten detected topics, 2) five quantitative attributes indicating the degree of intensity in the valence (i.e., unpleasantness/pleasantness) and emotional intensities across four primary emotions of fear, anger, sadness and joy, and 3) two qualitative attributes indicating the sentiment category and the most dominant emotion category, respectively. To illustrate how the dataset can be used, we present descriptive statistics around the topics, sentiments and emotions attributes and their temporal distributions, and discuss possible applications in communication, psychology, public health, economics and epidemiology.

* 20 pages, 5 figures, 9 tables 

  Access Paper or Ask Questions

Covid-19 Discourse on Twitter: How the Topics, Sentiments, Subjectivity, and Figurative Frames Changed Over Time

Mar 16, 2021
Philipp Wicke, Marianna M. Bolognesi

The words we use to talk about the current epidemiological crisis on social media can inform us on how we are conceptualizing the pandemic and how we are reacting to its development. This paper provides an extensive explorative analysis of how the discourse about Covid-19 reported on Twitter changes through time, focusing on the first wave of this pandemic. Based on an extensive corpus of tweets (produced between 20th March and 1st July 2020) first we show how the topics associated with the development of the pandemic changed through time, using topic modeling. Second, we show how the sentiment polarity of the language used in the tweets changed from a relatively positive valence during the first lockdown, toward a more negative valence in correspondence with the reopening. Third we show how the average subjectivity of the tweets increased linearly and fourth, how the popular and frequently used figurative frame of WAR changed when real riots and fights entered the discourse.

* Frontiers in Communication, Volume: 6, Pages: 45, Year: 2021 

  Access Paper or Ask Questions

Disentangled Learning of Stance and Aspect Topics for Vaccine Attitude Detection in Social Media

May 06, 2022
Lixing Zhu, Zheng Fang, Gabriele Pergola, Rob Procter, Yulan He

Building models to detect vaccine attitudes on social media is challenging because of the composite, often intricate aspects involved, and the limited availability of annotated data. Existing approaches have relied heavily on supervised training that requires abundant annotations and pre-defined aspect categories. Instead, with the aim of leveraging the large amount of unannotated data now available on vaccination, we propose a novel semi-supervised approach for vaccine attitude detection, called VADet. A variational autoencoding architecture based on language models is employed to learn from unlabelled data the topical information of the domain. Then, the model is fine-tuned with a few manually annotated examples of user attitudes. We validate the effectiveness of VADet on our annotated data and also on an existing vaccination corpus annotated with opinions on vaccines. Our results show that VADet is able to learn disentangled stance and aspect topics, and outperforms existing aspect-based sentiment analysis models on both stance detection and tweet clustering.

  Access Paper or Ask Questions

Modeling Coherence for Neural Machine Translation with Dynamic and Topic Caches

Jun 14, 2018
Shaohui Kuang, Deyi Xiong, Weihua Luo, Guodong Zhou

Sentences in a well-formed text are connected to each other via various links to form the cohesive structure of the text. Current neural machine translation (NMT) systems translate a text in a conventional sentence-by-sentence fashion, ignoring such cross-sentence links and dependencies. This may lead to generate an incoherent target text for a coherent source text. In order to handle this issue, we propose a cache-based approach to modeling coherence for neural machine translation by capturing contextual information either from recently translated sentences or the entire document. Particularly, we explore two types of caches: a dynamic cache, which stores words from the best translation hypotheses of preceding sentences, and a topic cache, which maintains a set of target-side topical words that are semantically related to the document to be translated. On this basis, we build a new layer to score target words in these two caches with a cache-based neural model. Here the estimated probabilities from the cache-based neural model are combined with NMT probabilities into the final word prediction probabilities via a gating mechanism. Finally, the proposed cache-based neural model is trained jointly with NMT system in an end-to-end manner. Experiments and analysis presented in this paper demonstrate that the proposed cache-based model achieves substantial improvements over several state-of-the-art SMT and NMT baselines.

* Accepted by COLING2018,11 pages, 3 figures 

  Access Paper or Ask Questions

Fake News Detection System using XLNet model with Topic Distributions: [email protected] Shared Task

Jan 12, 2021
Akansha Gautam, Venktesh V, Sarah Masud

With the ease of access to information, and its rapid dissemination over the internet (both velocity and volume), it has become challenging to filter out truthful information from fake ones. The research community is now faced with the task of automatic detection of fake news, which carries real-world socio-political impact. One such research contribution came in the form of the [email protected] Shared Task on COVID19 Fake News Detection in English. In this paper, we shed light on a novel method we proposed as a part of this shared task. Our team introduced an approach to combine topical distributions from Latent Dirichlet Allocation (LDA) with contextualized representations from XLNet. We also compared our method with existing baselines to show that XLNet + Topic Distributions outperforms other approaches by attaining an F1-score of 0.967.

* Accepted at [email protected] Shared Task for the CONSTRAINT workshop, collocated with AAAI 2021 

  Access Paper or Ask Questions

Topic Modeling on User Stories using Word Mover's Distance

Jul 13, 2020
Kim Julian Gülle, Nicholas Ford, Patrick Ebel, Florian Brokhausen, Andreas Vogelsang

Requirements elicitation has recently been complemented with crowd-based techniques, which continuously involve large, heterogeneous groups of users who express their feedback through a variety of media. Crowd-based elicitation has great potential for engaging with (potential) users early on but also results in large sets of raw and unstructured feedback. Consolidating and analyzing this feedback is a key challenge for turning it into sensible user requirements. In this paper, we focus on topic modeling as a means to identify topics within a large set of crowd-generated user stories and compare three approaches: (1) a traditional approach based on Latent Dirichlet Allocation, (2) a combination of word embeddings and principal component analysis, and (3) a combination of word embeddings and Word Mover's Distance. We evaluate the approaches on a publicly available set of 2,966 user stories written and categorized by crowd workers. We found that a combination of word embeddings and Word Mover's Distance is most promising. Depending on the word embeddings we use in our approaches, we manage to cluster the user stories in two ways: one that is closer to the original categorization and another that allows new insights into the dataset, e.g. to find potentially new categories. Unfortunately, no measure exists to rate the quality of our results objectively. Still, our findings provide a basis for future work towards analyzing crowd-sourced user stories.

  Access Paper or Ask Questions

Clustering Introductory Computer Science Exercises Using Topic Modeling Methods

Apr 21, 2021
Laura O. Moraes, Carlos Eduardo Pedreira

Manually determining concepts present in a group of questions is a challenging and time-consuming process. However, the process is an essential step while modeling a virtual learning environment since a mapping between concepts and questions using mastery level assessment and recommendation engines are required. We investigated unsupervised semantic models (known as topic modeling techniques) to assist computer science teachers in this task and propose a method to transform Computer Science 1 teacher-provided code solutions into representative text documents, including the code structure information. By applying non-negative matrix factorization and latent Dirichlet allocation techniques, we extract the underlying relationship between questions and validate the results using an external dataset. We consider the interpretability of the learned concepts using 14 university professors' data, and the results confirm six semantically coherent clusters using the current dataset. Moreover, the six topics comprise the main concepts present in the test dataset, achieving 0.75 in the normalized pointwise mutual information metric. The metric correlates with human ratings, making the proposed method useful and providing semantics for large amounts of unannotated code.

* IEEE Transactions on Learning Technologies, vol. 14, no. 1, pp. 42-54, Feb. 2021 
* 13 pages, 11 figures, published in IEEE Transactions on Learning Technologies 

  Access Paper or Ask Questions

Towards Training Probabilistic Topic Models on Neuromorphic Multi-chip Systems

Apr 10, 2018
Zihao Xiao, Jianfei Chen, Jun Zhu

Probabilistic topic models are popular unsupervised learning methods, including probabilistic latent semantic indexing (pLSI) and latent Dirichlet allocation (LDA). By now, their training is implemented on general purpose computers (GPCs), which are flexible in programming but energy-consuming. Towards low-energy implementations, this paper investigates their training on an emerging hardware technology called the neuromorphic multi-chip systems (NMSs). NMSs are very effective for a family of algorithms called spiking neural networks (SNNs). We present three SNNs to train topic models. The first SNN is a batch algorithm combining the conventional collapsed Gibbs sampling (CGS) algorithm and an inference SNN to train LDA. The other two SNNs are online algorithms targeting at both energy- and storage-limited environments. The two online algorithms are equivalent with training LDA by using maximum-a-posterior estimation and maximizing the semi-collapsed likelihood, respectively. They use novel, tailored ordinary differential equations for stochastic optimization. We simulate the new algorithms and show that they are comparable with the GPC algorithms, while being suitable for NMS implementation. We also propose an extension to train pLSI and a method to prune the network to obey the limited fan-in of some NMSs.

* Accepted by AAAI-18, oral 

  Access Paper or Ask Questions

DAPPER: Scaling Dynamic Author Persona Topic Model to Billion Word Corpora

Nov 03, 2018
Robert Giaquinto, Arindam Banerjee

Extracting common narratives from multi-author dynamic text corpora requires complex models, such as the Dynamic Author Persona (DAP) topic model. However, such models are complex and can struggle to scale to large corpora, often because of challenging non-conjugate terms. To overcome such challenges, in this paper we adapt new ideas in approximate inference to the DAP model, resulting in the DAP Performed Exceedingly Rapidly (DAPPER) topic model. Specifically, we develop Conjugate-Computation Variational Inference (CVI) based variational Expectation-Maximization (EM) for learning the model, yielding fast, closed form updates for each document, replacing iterative optimization in earlier work. Our results show significant improvements in model fit and training time without needing to compromise the model's temporal structure or the application of Regularized Variation Inference (RVI). We demonstrate the scalability and effectiveness of the DAPPER model by extracting health journeys from the CaringBridge corpus --- a collection of 9 million journals written by 200,000 authors during health crises.

* Published in IEEE International Conference on Data Mining, November 2018, Singapore 

  Access Paper or Ask Questions