Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Topic": models, code, and papers

Necessary and Sufficient Conditions and a Provably Efficient Algorithm for Separable Topic Discovery

Dec 04, 2015
Weicong Ding, Prakash Ishwar, Venkatesh Saligrama

We develop necessary and sufficient conditions and a novel provably consistent and efficient algorithm for discovering topics (latent factors) from observations (documents) that are realized from a probabilistic mixture of shared latent factors that have certain properties. Our focus is on the class of topic models in which each shared latent factor contains a novel word that is unique to that factor, a property that has come to be known as separability. Our algorithm is based on the key insight that the novel words correspond to the extreme points of the convex hull formed by the row-vectors of a suitably normalized word co-occurrence matrix. We leverage this geometric insight to establish polynomial computation and sample complexity bounds based on a few isotropic random projections of the rows of the normalized word co-occurrence matrix. Our proposed random-projections-based algorithm is naturally amenable to an efficient distributed implementation and is attractive for modern web-scale distributed data mining applications.

* Typo corrected; Revised argument in Lemma 3 and 4 

  Access Paper or Ask Questions

Calculating Semantic Similarity between Academic Articles using Topic Event and Ontology

Nov 30, 2017
Ming Liu, Bo Lang, Zepeng Gu

Determining semantic similarity between academic documents is crucial to many tasks such as plagiarism detection, automatic technical survey and semantic search. Current studies mostly focus on semantic similarity between concepts, sentences and short text fragments. However, document-level semantic matching is still based on statistical information in surface level, neglecting article structures and global semantic meanings, which may cause the deviation in document understanding. In this paper, we focus on the document-level semantic similarity issue for academic literatures with a novel method. We represent academic articles with topic events that utilize multiple information profiles, such as research purposes, methodologies and domains to integrally describe the research work, and calculate the similarity between topic events based on the domain ontology to acquire the semantic similarity between articles. Experiments show that our approach achieves significant performance compared to state-of-the-art methods.

* 21 pages, 10 Figures 

  Access Paper or Ask Questions

Beyond Topics: Discovering Latent Healthcare Objectives from Event Sequences

Oct 04, 2021
Adrian Caruana, Madhushi Bandara, Daniel Catchpoole, Paul J Kennedy

A meaningful understanding of clinical protocols and patient pathways helps improve healthcare outcomes. Electronic health records (EHR) reflect real-world treatment behaviours that are used to enhance healthcare management but present challenges; protocols and pathways are often loosely defined and with elements frequently not recorded in EHRs, complicating the enhancement. To solve this challenge, healthcare objectives associated with healthcare management activities can be indirectly observed in EHRs as latent topics. Topic models, such as Latent Dirichlet Allocation (LDA), are used to identify latent patterns in EHR data. However, they do not examine the ordered nature of EHR sequences, nor do they appraise individual events in isolation. Our novel approach, the Categorical Sequence Encoder (CaSE) addresses these shortcomings. The sequential nature of EHRs is captured by CaSE's event-level representations, revealing latent healthcare objectives. In synthetic EHR sequences, CaSE outperforms LDA by up to 37% at identifying healthcare objectives. In the real-world MIMIC-III dataset, CaSE identifies meaningful representations that could critically enhance protocol and pathway development.

  Access Paper or Ask Questions

A Few Topical Tweets are Enough for Effective User-Level Stance Detection

Apr 07, 2020
Younes Samih, Kareem Darwish

Stance detection entails ascertaining the position of a user towards a target, such as an entity, topic, or claim. Recent work that employs unsupervised classification has shown that performing stance detection on vocal Twitter users, who have many tweets on a target, can yield very high accuracy (+98%). However, such methods perform poorly or fail completely for less vocal users, who may have authored only a few tweets about a target. In this paper, we tackle stance detection for such users using two approaches. In the first approach, we improve user-level stance detection by representing tweets using contextualized embeddings, which capture latent meanings of words in context. We show that this approach outperforms two strong baselines and achieves 89.6% accuracy and 91.3% macro F-measure on eight controversial topics. In the second approach, we expand the tweets of a given user using their Twitter timeline tweets, and then we perform unsupervised classification of the user, which entails clustering a user with other users in the training set. This approach achieves 95.6% accuracy and 93.1% macro F-measure.

  Access Paper or Ask Questions

The effect of wording on message propagation: Topic- and author-controlled natural experiments on Twitter

May 06, 2014
Chenhao Tan, Lillian Lee, Bo Pang

Consider a person trying to spread an important message on a social network. He/she can spend hours trying to craft the message. Does it actually matter? While there has been extensive prior work looking into predicting popularity of social-media content, the effect of wording per se has rarely been studied since it is often confounded with the popularity of the author and the topic. To control for these confounding factors, we take advantage of the surprising fact that there are many pairs of tweets containing the same url and written by the same user but employing different wording. Given such pairs, we ask: which version attracts more retweets? This turns out to be a more difficult task than predicting popular topics. Still, humans can answer this question better than chance (but far from perfectly), and the computational methods we develop can do better than both an average human and a strong competing method trained on non-controlled data.

* 11 pages, to appear in Proceedings of ACL 2014 

  Access Paper or Ask Questions

Knowledge-based Word Sense Disambiguation using Topic Models

Jan 05, 2018
Devendra Singh Chaplot, Ruslan Salakhutdinov

Word Sense Disambiguation is an open problem in Natural Language Processing which is particularly challenging and useful in the unsupervised setting where all the words in any given text need to be disambiguated without using any labeled data. Typically WSD systems use the sentence or a small window of words around the target word as the context for disambiguation because their computational complexity scales exponentially with the size of the context. In this paper, we leverage the formalism of topic model to design a WSD system that scales linearly with the number of words in the context. As a result, our system is able to utilize the whole document as the context for a word to be disambiguated. The proposed method is a variant of Latent Dirichlet Allocation in which the topic proportions for a document are replaced by synset proportions. We further utilize the information in the WordNet by assigning a non-uniform prior to synset distribution over words and a logistic-normal prior for document distribution over synsets. We evaluate the proposed method on Senseval-2, Senseval-3, SemEval-2007, SemEval-2013 and SemEval-2015 English All-Word WSD datasets and show that it outperforms the state-of-the-art unsupervised knowledge-based WSD system by a significant margin.

* To appear in AAAI-18 

  Access Paper or Ask Questions

BLM-17m: A Large-Scale Dataset for Black Lives Matter Topic Detection on Twitter

May 04, 2021
Hasan Kemik, Nusret Özateş, Meysam Asgari-Chenaghlu, Erik Cambria

Protection of human rights is one of the most important problems of our world. In this paper, our aim is to provide a dataset which covers one of the most significant human rights contradiction in recent months affected the whole world, George Floyd incident. We propose a labeled dataset for topic detection that contains 17 million tweets. These Tweets are collected from 25 May 2020 to 21 August 2020 that covers 89 days from start of this incident. We labeled the dataset by monitoring most trending news topics from global and local newspapers. Apart from that, we present two baselines, TF-IDF and LDA. We evaluated the results of these two methods with three different k values for metrics of precision, recall and f1-score. The collected dataset is available at

  Access Paper or Ask Questions

Effective user intent mining with unsupervised word representation models and topic modelling

Sep 04, 2021
Bencheng Wei

Understanding the intent behind chat between customers and customer service agents has become a crucial problem nowadays due to an exponential increase in the use of the Internet by people from different cultures and educational backgrounds. More importantly, the explosion of e-commerce has led to a significant increase in text conversation between customers and agents. In this paper, we propose an approach to data mining the conversation intents behind the textual data. Using the customer service data set, we train unsupervised text representation models, and then develop an intent mapping model which would rank the predefined intents base on cosine similarity between sentences and intents. Topic-modeling techniques are used to define intents and domain experts are also involved to interpret topic modelling results. With this approach, we can get a good understanding of the user intentions behind the unlabelled customer service textual data.

  Access Paper or Ask Questions

DOLDA - a regularized supervised topic model for high-dimensional multi-class regression

Oct 20, 2016
Måns Magnusson, Leif Jonsson, Mattias Villani

Generating user interpretable multi-class predictions in data rich environments with many classes and explanatory covariates is a daunting task. We introduce Diagonal Orthant Latent Dirichlet Allocation (DOLDA), a supervised topic model for multi-class classification that can handle both many classes as well as many covariates. To handle many classes we use the recently proposed Diagonal Orthant (DO) probit model (Johndrow et al., 2013) together with an efficient Horseshoe prior for variable selection/shrinkage (Carvalho et al., 2010). We propose a computationally efficient parallel Gibbs sampler for the new model. An important advantage of DOLDA is that learned topics are directly connected to individual classes without the need for a reference class. We evaluate the model's predictive accuracy on two datasets and demonstrate DOLDA's advantage in interpreting the generated predictions.

  Access Paper or Ask Questions

A Neural Topic-Attention Model for Medical Term Abbreviation Disambiguation

Oct 30, 2019
Irene Li, Michihiro Yasunaga, Muhammed Yavuz Nuzumlalı, Cesar Caraballo, Shiwani Mahajan, Harlan Krumholz, Dragomir Radev

Automated analysis of clinical notes is attracting increasing attention. However, there has not been much work on medical term abbreviation disambiguation. Such abbreviations are abundant, and highly ambiguous, in clinical documents. One of the main obstacles is the lack of large scale, balance labeled data sets. To address the issue, we propose a few-shot learning approach to take advantage of limited labeled data. Specifically, a neural topic-attention model is applied to learn improved contextualized sentence representations for medical term abbreviation disambiguation. Another vital issue is that the existing scarce annotations are noisy and missing. We re-examine and correct an existing dataset for training and collect a test set to evaluate the models fairly especially for rare senses. We train our model on the training set which contains 30 abbreviation terms as categories (on average, 479 samples and 3.24 classes in each term) selected from a public abbreviation disambiguation dataset, and then test on a manually-created balanced dataset (each class in each term has 15 samples). We show that enhancing the sentence representation with topic information improves the performance on small-scale unbalanced training datasets by a large margin, compared to a number of baseline models.

  Access Paper or Ask Questions