Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Topic": models, code, and papers

Handling Collocations in Hierarchical Latent Tree Analysis for Topic Modeling

Jul 10, 2020
Leonard K. M. Poon, Nevin L. Zhang, Haoran Xie, Gary Cheng

Topic modeling has been one of the most active research areas in machine learning in recent years. Hierarchical latent tree analysis (HLTA) has been recently proposed for hierarchical topic modeling and has shown superior performance over state-of-the-art methods. However, the models used in HLTA have a tree structure and cannot represent the different meanings of multiword expressions sharing the same word appropriately. Therefore, we propose a method for extracting and selecting collocations as a preprocessing step for HLTA. The selected collocations are replaced with single tokens in the bag-of-words model before running HLTA. Our empirical evaluation shows that the proposed method led to better performance of HLTA on three of the four data sets tested.


  Access Paper or Ask Questions

Discovering Airline-Specific Business Intelligence from Online Passenger Reviews: An Unsupervised Text Analytics Approach

Dec 14, 2020
Sharan Srinivas, Surya Ramachandiran

To understand the important dimensions of service quality from the passenger's perspective and tailor service offerings for competitive advantage, airlines can capitalize on the abundantly available online customer reviews (OCR). The objective of this paper is to discover company- and competitor-specific intelligence from OCR using an unsupervised text analytics approach. First, the key aspects (or topics) discussed in the OCR are extracted using three topic models - probabilistic latent semantic analysis (pLSA) and two variants of Latent Dirichlet allocation (LDA-VI and LDA-GS). Subsequently, we propose an ensemble-assisted topic model (EA-TM), which integrates the individual topic models, to classify each review sentence to the most representative aspect. Likewise, to determine the sentiment corresponding to a review sentence, an ensemble sentiment analyzer (E-SA), which combines the predictions of three opinion mining methods (AFINN, SentiStrength, and VADER), is developed. An aspect-based opinion summary (AOS), which provides a snapshot of passenger-perceived strengths and weaknesses of an airline, is established by consolidating the sentiments associated with each aspect. Furthermore, a bi-gram analysis of the labeled OCR is employed to perform root cause analysis within each identified aspect. A case study involving 99,147 airline reviews of a US-based target carrier and four of its competitors is used to validate the proposed approach. The results indicate that a cost- and time-effective performance summary of an airline and its competitors can be obtained from OCR. Finally, besides providing theoretical and managerial implications based on our results, we also provide implications for post-pandemic preparedness in the airline industry considering the unprecedented impact of coronavirus disease 2019 (COVID-19) and predictions on similar pandemics in the future.

* 34 pages, 8 figures, 4 tables 

  Access Paper or Ask Questions

Characterizing Diabetes, Diet, Exercise, and Obesity Comments on Twitter

Sep 22, 2017
Amir Karami, Alicia A. Dahl, Gabrielle Turner-McGrievy, Hadi Kharrazi, Jr. George Shaw

Social media provide a platform for users to express their opinions and share information. Understanding public health opinions on social media, such as Twitter, offers a unique approach to characterizing common health issues such as diabetes, diet, exercise, and obesity (DDEO), however, collecting and analyzing a large scale conversational public health data set is a challenging research task. The goal of this research is to analyze the characteristics of the general public's opinions in regard to diabetes, diet, exercise and obesity (DDEO) as expressed on Twitter. A multi-component semantic and linguistic framework was developed to collect Twitter data, discover topics of interest about DDEO, and analyze the topics. From the extracted 4.5 million tweets, 8% of tweets discussed diabetes, 23.7% diet, 16.6% exercise, and 51.7% obesity. The strongest correlation among the topics was determined between exercise and obesity. Other notable correlations were: diabetes and obesity, and diet and obesity DDEO terms were also identified as subtopics of each of the DDEO topics. The frequent subtopics discussed along with Diabetes, excluding the DDEO terms themselves, were blood pressure, heart attack, yoga, and Alzheimer. The non-DDEO subtopics for Diet included vegetarian, pregnancy, celebrities, weight loss, religious, and mental health, while subtopics for Exercise included computer games, brain, fitness, and daily plan. Non-DDEO subtopics for Obesity included Alzheimer, cancer, and children. With 2.67 billion social media users in 2016, publicly available data such as Twitter posts can be utilized to support clinical providers, public health experts, and social scientists in better understanding common public opinions in regard to diabetes, diet, exercise, and obesity.

* International Journal of Information Management (2017) 

  Access Paper or Ask Questions

Nested Hierarchical Dirichlet Processes for Multi-Level Non-Parametric Admixture Modeling

Aug 27, 2015
Lavanya Sita Tekumalla, Priyanka Agrawal, Indrajit Bhattacharya

Dirichlet Process(DP) is a Bayesian non-parametric prior for infinite mixture modeling, where the number of mixture components grows with the number of data items. The Hierarchical Dirichlet Process (HDP), is an extension of DP for grouped data, often used for non-parametric topic modeling, where each group is a mixture over shared mixture densities. The Nested Dirichlet Process (nDP), on the other hand, is an extension of the DP for learning group level distributions from data, simultaneously clustering the groups. It allows group level distributions to be shared across groups in a non-parametric setting, leading to a non-parametric mixture of mixtures. The nCRF extends the nDP for multilevel non-parametric mixture modeling, enabling modeling topic hierarchies. However, the nDP and nCRF do not allow sharing of distributions as required in many applications, motivating the need for multi-level non-parametric admixture modeling. We address this gap by proposing multi-level nested HDPs (nHDP) where the base distribution of the HDP is itself a HDP at each level thereby leading to admixtures of admixtures at each level. Because of couplings between various HDP levels, scaling up is naturally a challenge during inference. We propose a multi-level nested Chinese Restaurant Franchise (nCRF) representation for the nested HDP, with which we outline an inference algorithm based on Gibbs Sampling. We evaluate our model with the two level nHDP for non-parametric entity topic modeling where an inner HDP creates a countably infinite set of topic mixtures and associates them with author entities, while an outer HDP associates documents with these author entities. In our experiments on two real world research corpora, the nHDP is able to generalize significantly better than existing models and detect missing author entities with a reasonable level of accuracy.

* Proceedings of European Conference of Machine Learning (ECML) 2013 

  Access Paper or Ask Questions

An Enhanced Machine Learning Topic Classification Methodology for Cybersecurity

Aug 30, 2021
Elijah Pelofske, Lorie M. Liebrock, Vincent Urias

In this research, we use user defined labels from three internet text sources (Reddit, Stackexchange, Arxiv) to train 21 different machine learning models for the topic classification task of detecting cybersecurity discussions in natural text. We analyze the false positive and false negative rates of each of the 21 model's in a cross validation experiment. Then we present a Cybersecurity Topic Classification (CTC) tool, which takes the majority vote of the 21 trained machine learning models as the decision mechanism for detecting cybersecurity related text. We also show that the majority vote mechanism of the CTC tool provides lower false negative and false positive rates on average than any of the 21 individual models. We show that the CTC tool is scalable to the hundreds of thousands of documents with a wall clock time on the order of hours.


  Access Paper or Ask Questions

Nonparametric Bayesian Topic Modelling with the Hierarchical Pitman-Yor Processes

Sep 22, 2016
Kar Wai Lim, Wray Buntine, Changyou Chen, Lan Du

The Dirichlet process and its extension, the Pitman-Yor process, are stochastic processes that take probability distributions as a parameter. These processes can be stacked up to form a hierarchical nonparametric Bayesian model. In this article, we present efficient methods for the use of these processes in this hierarchical context, and apply them to latent variable models for text analytics. In particular, we propose a general framework for designing these Bayesian models, which are called topic models in the computer science community. We then propose a specific nonparametric Bayesian topic model for modelling text from social media. We focus on tweets (posts on Twitter) in this article due to their ease of access. We find that our nonparametric model performs better than existing parametric models in both goodness of fit and real world applications.

* International Journal of Approximate Reasoning, Volume 78, pp. 172-191. Elsevier. 2016 
* Preprint for International Journal of Approximate Reasoning 

  Access Paper or Ask Questions

Topics to Avoid: Demoting Latent Confounds in Text Classification

Sep 01, 2019
Sachin Kumar, Shuly Wintner, Noah A. Smith, Yulia Tsvetkov

Despite impressive performance on many text classification tasks, deep neural networks tend to learn frequent superficial patterns that are specific to the training data and do not always generalize well. In this work, we observe this limitation with respect to the task of native language identification. We find that standard text classifiers which perform well on the test set end up learning topical features which are confounds of the prediction task (e.g., if the input text mentions Sweden, the classifier predicts that the author's native language is Swedish). We propose a method that represents the latent topical confounds and a model which "unlearns" confounding features by predicting both the label of the input text and the confound; but we train the two predictors adversarially in an alternating fashion to learn a text representation that predicts the correct label but is less prone to using information about the confound. We show that this model generalizes better and learns features that are indicative of the writing style rather than the content.

* 2019 Conference on Empirical Methods in Natural Language Processing (EMNLP 2019) 

  Access Paper or Ask Questions

Fast Learning of Clusters and Topics via Sparse Posteriors

Sep 23, 2016
Michael C. Hughes, Erik B. Sudderth

Mixture models and topic models generate each observation from a single cluster, but standard variational posteriors for each observation assign positive probability to all possible clusters. This requires dense storage and runtime costs that scale with the total number of clusters, even though typically only a few clusters have significant posterior mass for any data point. We propose a constrained family of sparse variational distributions that allow at most $L$ non-zero entries, where the tunable threshold $L$ trades off speed for accuracy. Previous sparse approximations have used hard assignments ($L=1$), but we find that moderate values of $L>1$ provide superior performance. Our approach easily integrates with stochastic or incremental optimization algorithms to scale to millions of examples. Experiments training mixture models of image patches and topic models for news articles show that our approach produces better-quality models in far less time than baseline methods.


  Access Paper or Ask Questions

Continuity of Topic, Interaction, and Query: Learning to Quote in Online Conversations

Jun 18, 2021
Lingzhi Wang, Jing Li, Xingshan Zeng, Haisong Zhang, Kam-Fai Wong

Quotations are crucial for successful explanations and persuasions in interpersonal communications. However, finding what to quote in a conversation is challenging for both humans and machines. This work studies automatic quotation generation in an online conversation and explores how language consistency affects whether a quotation fits the given context. Here, we capture the contextual consistency of a quotation in terms of latent topics, interactions with the dialogue history, and coherence to the query turn's existing content. Further, an encoder-decoder neural framework is employed to continue the context with a quotation via language generation. Experiment results on two large-scale datasets in English and Chinese demonstrate that our quotation generation model outperforms the state-of-the-art models. Further analysis shows that topic, interaction, and query consistency are all helpful to learn how to quote in online conversations.

* Accepted by EMNLP 2020, updated with dataset link 

  Access Paper or Ask Questions

COVID-19 Literature Topic-Based Search via Hierarchical NMF

Sep 07, 2020
Rachel Grotheer, Yihuan Huang, Pengyu Li, Elizaveta Rebrova, Deanna Needell, Longxiu Huang, Alona Kryshchenko, Xia Li, Kyung Ha, Oleksandr Kryshchenko

A dataset of COVID-19-related scientific literature is compiled, combining the articles from several online libraries and selecting those with open access and full text available. Then, hierarchical nonnegative matrix factorization is used to organize literature related to the novel coronavirus into a tree structure that allows researchers to search for relevant literature based on detected topics. We discover eight major latent topics and 52 granular subtopics in the body of literature, related to vaccines, genetic structure and modeling of the disease and patient studies, as well as related diseases and virology. In order that our tool may help current researchers, an interactive website is created that organizes available literature using this hierarchical structure.


  Access Paper or Ask Questions

<<
73
74
75
76
77
78
79
80
81
82
83
84
85
>>