Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Topic": models, code, and papers

Computer Vision for Autonomous Vehicles: Problems, Datasets and State-of-the-Art

Apr 18, 2017
Joel Janai, Fatma Güney, Aseem Behl, Andreas Geiger

Recent years have witnessed amazing progress in AI related fields such as computer vision, machine learning and autonomous vehicles. As with any rapidly growing field, however, it becomes increasingly difficult to stay up-to-date or enter the field as a beginner. While several topic specific survey papers have been written, to date no general survey on problems, datasets and methods in computer vision for autonomous vehicles exists. This paper attempts to narrow this gap by providing a state-of-the-art survey on this topic. Our survey includes both the historically most relevant literature as well as the current state-of-the-art on several specific topics, including recognition, reconstruction, motion estimation, tracking, scene understanding and end-to-end learning. Towards this goal, we first provide a taxonomy to classify each approach and then analyze the performance of the state-of-the-art on several challenging benchmarking datasets including KITTI, ISPRS, MOT and Cityscapes. Besides, we discuss open problems and current research challenges. To ease accessibility and accommodate missing references, we will also provide an interactive platform which allows to navigate topics and methods, and provides additional information and project links for each paper.


  Access Paper or Ask Questions

Content analysis of Persian/Farsi Tweets during COVID-19 pandemic in Iran using NLP

May 17, 2020
Pedram Hosseini, Poorya Hosseini, David A. Broniatowski

Iran, along with China, South Korea, and Italy was among the countries that were hit hard in the first wave of the COVID-19 spread. Twitter is one of the widely-used online platforms by Iranians inside and abroad for sharing their opinion, thoughts, and feelings about a wide range of issues. In this study, using more than 530,000 original tweets in Persian/Farsi on COVID-19, we analyzed the topics discussed among users, who are mainly Iranians, to gauge and track the response to the pandemic and how it evolved over time. We applied a combination of manual annotation of a random sample of tweets and topic modeling tools to classify the contents and frequency of each category of topics. We identified the top 25 topics among which living experience under home quarantine emerged as a major talking point. We additionally categorized broader content of tweets that shows satire, followed by news, is the dominant tweet type among the Iranian users. While this framework and methodology can be used to track public response to ongoing developments related to COVID-19, a generalization of this framework can become a useful framework to gauge Iranian public reaction to ongoing policy measures or events locally and internationally.


  Access Paper or Ask Questions

Dynamic Nonlocal Language Modeling via Hierarchical Topic-Based Adaptation

Apr 27, 2001
Radu Florian, David Yarowsky

This paper presents a novel method of generating and applying hierarchical, dynamic topic-based language models. It proposes and evaluates new cluster generation, hierarchical smoothing and adaptive topic-probability estimation techniques. These combined models help capture long-distance lexical dependencies. Experiments on the Broadcast News corpus show significant improvement in perplexity (10.5% overall and 33.5% on target vocabulary).

* Proceedings of the 37th Annual Meeting of the ACL, pages 167-174, College Park, Maryland 
* 8 pages, 29 figures, presented at ACL99, College Park, Maryland 

  Access Paper or Ask Questions

Assessing COVID-19 Impacts on College Students via Automated Processing of Free-form Text

Dec 17, 2020
Ravi Sharma, Sri Divya Pagadala, Pratool Bharti, Sriram Chellappan, Trine Schmidt, Raj Goyal

In this paper, we report experimental results on assessing the impact of COVID-19 on college students by processing free-form texts generated by them. By free-form texts, we mean textual entries posted by college students (enrolled in a four year US college) via an app specifically designed to assess and improve their mental health. Using a dataset comprising of more than 9000 textual entries from 1451 students collected over four months (split between pre and post COVID-19), and established NLP techniques, a) we assess how topics of most interest to student change between pre and post COVID-19, and b) we assess the sentiments that students exhibit in each topic between pre and post COVID-19. Our analysis reveals that topics like Education became noticeably less important to students post COVID-19, while Health became much more trending. We also found that across all topics, negative sentiment among students post COVID-19 was much higher compared to pre-COVID-19. We expect our study to have an impact on policy-makers in higher education across several spectra, including college administrators, teachers, parents, and mental health counselors.

* 8 pages, 5 figures, HEALTHINF - 14th International Conference on Health Informatics 

  Access Paper or Ask Questions

CSDS: A Fine-Grained Chinese Dataset for Customer Service Dialogue Summarization

Sep 06, 2021
Haitao Lin, Liqun Ma, Junnan Zhu, Lu Xiang, Yu Zhou, Jiajun Zhang, Chengqing Zong

Dialogue summarization has drawn much attention recently. Especially in the customer service domain, agents could use dialogue summaries to help boost their works by quickly knowing customer's issues and service progress. These applications require summaries to contain the perspective of a single speaker and have a clear topic flow structure, while neither are available in existing datasets. Therefore, in this paper, we introduce a novel Chinese dataset for Customer Service Dialogue Summarization (CSDS). CSDS improves the abstractive summaries in two aspects: (1) In addition to the overall summary for the whole dialogue, role-oriented summaries are also provided to acquire different speakers' viewpoints. (2) All the summaries sum up each topic separately, thus containing the topic-level structure of the dialogue. We define tasks in CSDS as generating the overall summary and different role-oriented summaries for a given dialogue. Next, we compare various summarization methods on CSDS, and experiment results show that existing methods are prone to generate redundant and incoherent summaries. Besides, the performance becomes much worse when analyzing the performance on role-oriented summaries and topic structures. We hope that this study could benchmark Chinese dialogue summarization and benefit further studies.

* Accepted by EMNLP2021 main conference 

  Access Paper or Ask Questions

CSDS: A Fine-grained Chinese Dataset for Customer Service Dialogue Summarization

Aug 30, 2021
Haitao Lin, Liqun Ma, Junnan Zhu, Lu Xiang, Yu Zhou, Jiajun Zhang, Chengqing Zong

Dialogue summarization has drawn much attention recently. Especially in the customer service domain, agents could use dialogue summaries to help boost their works by quickly knowing customers' issues and service progress. These applications require summaries to contain the perspective of a single speaker and have a clear topic flow structure. Neither are available in existing datasets. Therefore, in this paper, we introduce a novel Chinese dataset for Customer Service Dialogue Summarization (CSDS). CSDS improves the abstractive summaries in two aspects: (1) In addition to the overall summary for the whole dialogue, role-oriented summaries are also provided to acquire different speakers' viewpoints. (2) All the summaries sum up each topic separately, thus containing the topic-level structure of the dialogue. We define tasks in CSDS as generating the overall summary and different role-oriented summaries for a given dialogue. Next, we compare various summarization methods on CSDS, and experiment results show that existing methods are prone to generate redundant and incoherent summaries. Besides, the performance becomes much worse when analyzing the performance on role-oriented summaries and topic structures. We hope that this study could benchmark Chinese dialogue summarization and benefit further studies.

* Accepted by EMNLP2021 main conference 

  Access Paper or Ask Questions

A Pipeline for Graph-Based Monitoring of the Changes in the Information Space of Russian Social Media during the Lockdown

Oct 24, 2021
V. Danilova, S. Popova, V. Karpova

With the COVID-19 outbreak and the subsequent lockdown, social media became a vital communication tool. The sudden outburst of online activity influenced information spread and consumption patterns. It increases the relevance of studying the dynamics of social networks and developing data processing pipelines that allow a comprehensive analysis of social media data in the temporal dimension. This paper scopes the weekly dynamics of the information space represented by Russian social media (Twitter and Livejournal) during a critical period (massive COVID-19 outbreak and first governmental measures). The approach is twofold: a) build the time series of topic similarity indicators by identifying COVID-related topics in each week and measuring user contribution to the topic space, and b) cluster user activity and display user-topic relationships on graphs in a dashboard application. The paper describes the development of the pipeline, explains the choices made and provides a case study of the adaptation to virus control measures. The results confirm that social processes and behaviour in response to pandemic-triggered changes can be successfully traced in social media. Moreover, the adaptation trends revealed by psychological and sociological studies are reflected in our data and can be explored using the proposed method.

* 59 pages, 8 figures, 2 tables, 2 appendices, to be published in: Monitoring of Public Opinion: Economic and Social Changes Journal (Public Opinion Monitoring) ISSN 2219-5467 

  Access Paper or Ask Questions

Metadata Enrichment of Multi-Disciplinary Digital Library: A Semantic-based Approach

Jun 21, 2018
Hussein T. Al-Natsheh, Lucie Martinet, Fabrice Muhlenbach, Fabien Rico, Djamel A. Zighed

In the scientific digital libraries, some papers from different research communities can be described by community-dependent keywords even if they share a semantically similar topic. Articles that are not tagged with enough keyword variations are poorly indexed in any information retrieval system which limits potentially fruitful exchanges between scientific disciplines. In this paper, we introduce a novel experimentally designed pipeline for multi-label semantic-based tagging developed for open-access metadata digital libraries. The approach starts by learning from a standard scientific categorization and a sample of topic tagged articles to find semantically relevant articles and enrich its metadata accordingly. Our proposed pipeline aims to enable researchers reaching articles from various disciplines that tend to use different terminologies. It allows retrieving semantically relevant articles given a limited known variation of search terms. In addition to achieving an accuracy that is higher than an expanded query based method using a topic synonym set extracted from a semantic network, our experiments also show a higher computational scalability versus other comparable techniques. We created a new benchmark extracted from the open-access metadata of a scientific digital library and published it along with the experiment code to allow further research in the topic.


  Access Paper or Ask Questions

Evaluating Fairness in Argument Retrieval

Aug 23, 2021
Sachin Pathiyan Cherumanal, Damiano Spina, Falk Scholer, W. Bruce Croft

Existing commercial search engines often struggle to represent different perspectives of a search query. Argument retrieval systems address this limitation of search engines and provide both positive (PRO) and negative (CON) perspectives about a user's information need on a controversial topic (e.g., climate change). The effectiveness of such argument retrieval systems is typically evaluated based on topical relevance and argument quality, without taking into account the often differing number of documents shown for the argument stances (PRO or CON). Therefore, systems may retrieve relevant passages, but with a biased exposure of arguments. In this work, we analyze a range of non-stochastic fairness-aware ranking and diversity metrics to evaluate the extent to which argument stances are fairly exposed in argument retrieval systems. Using the official runs of the argument retrieval task Touch\'e at CLEF 2020, as well as synthetic data to control the amount and order of argument stances in the rankings, we show that systems with the best effectiveness in terms of topical relevance are not necessarily the most fair or the most diverse in terms of argument stance. The relationships we found between (un)fairness and diversity metrics shed light on how to evaluate group fairness -- in addition to topical relevance -- in argument retrieval settings.


  Access Paper or Ask Questions

User Intent Inference for Web Search and Conversational Agents

May 28, 2020
Ali Ahmadvand

User intent understanding is a crucial step in designing both conversational agents and search engines. Detecting or inferring user intent is challenging, since the user utterances or queries can be short, ambiguous, and contextually dependent. To address these research challenges, my thesis work focuses on: 1) Utterance topic and intent classification for conversational agents 2) Query intent mining and classification for Web search engines, focusing on the e-commerce domain. To address the first topic, I proposed novel models to incorporate entity information and conversation-context clues to predict both topic and intent of the user's utterances. For the second research topic, I plan to extend the existing state of the art methods in Web search intent prediction to the e-commerce domain, via: 1) Developing a joint learning model to predict search queries' intents and the product categories associated with them, 2) Discovering new hidden users' intents. All the models will be evaluated on the real queries available from a major e-commerce site search engine. The results from these studies can be leveraged to improve performance of various tasks such as natural language understanding, query scoping, query suggestion, and ranking, resulting in an enriched user experience.

* WSDM2020 

  Access Paper or Ask Questions

<<
68
69
70
71
72
73
74
75
76
77
78
79
80
>>