Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Topic": models, code, and papers

Learning a Latent Simplex in Input-Sparsity Time

May 17, 2021
Ainesh Bakshi, Chiranjib Bhattacharyya, Ravi Kannan, David P. Woodruff, Samson Zhou

We consider the problem of learning a latent $k$-vertex simplex $K\subset\mathbb{R}^d$, given access to $A\in\mathbb{R}^{d\times n}$, which can be viewed as a data matrix with $n$ points that are obtained by randomly perturbing latent points in the simplex $K$ (potentially beyond $K$). A large class of latent variable models, such as adversarial clustering, mixed membership stochastic block models, and topic models can be cast as learning a latent simplex. Bhattacharyya and Kannan (SODA, 2020) give an algorithm for learning such a latent simplex in time roughly $O(k\cdot\textrm{nnz}(A))$, where $\textrm{nnz}(A)$ is the number of non-zeros in $A$. We show that the dependence on $k$ in the running time is unnecessary given a natural assumption about the mass of the top $k$ singular values of $A$, which holds in many of these applications. Further, we show this assumption is necessary, as otherwise an algorithm for learning a latent simplex would imply an algorithmic breakthrough for spectral low rank approximation. At a high level, Bhattacharyya and Kannan provide an adaptive algorithm that makes $k$ matrix-vector product queries to $A$ and each query is a function of all queries preceding it. Since each matrix-vector product requires $\textrm{nnz}(A)$ time, their overall running time appears unavoidable. Instead, we obtain a low-rank approximation to $A$ in input-sparsity time and show that the column space thus obtained has small $\sin\Theta$ (angular) distance to the right top-$k$ singular space of $A$. Our algorithm then selects $k$ points in the low-rank subspace with the largest inner product with $k$ carefully chosen random vectors. By working in the low-rank subspace, we avoid reading the entire matrix in each iteration and thus circumvent the $\Theta(k\cdot\textrm{nnz}(A))$ running time.

* ICLR 2021 

  Access Paper or Ask Questions

Deep learning for video game genre classification

Nov 21, 2020
Yuhang Jiang, Lukun Zheng

Video game genre classification based on its cover and textual description would be utterly beneficial to many modern identification, collocation, and retrieval systems. At the same time, it is also an extremely challenging task due to the following reasons: First, there exists a wide variety of video game genres, many of which are not concretely defined. Second, video game covers vary in many different ways such as colors, styles, textual information, etc, even for games of the same genre. Third, cover designs and textual descriptions may vary due to many external factors such as country, culture, target reader populations, etc. With the growing competitiveness in the video game industry, the cover designers and typographers push the cover designs to its limit in the hope of attracting sales. The computer-based automatic video game genre classification systems become a particularly exciting research topic in recent years. In this paper, we propose a multi-modal deep learning framework to solve this problem. The contribution of this paper is four-fold. First, we compiles a large dataset consisting of 50,000 video games from 21 genres made of cover images, description text, and title text and the genre information. Second, image-based and text-based, state-of-the-art models are evaluated thoroughly for the task of genre classification for video games. Third, we developed an efficient and salable multi-modal framework based on both images and texts. Fourth, a thorough analysis of the experimental results is given and future works to improve the performance is suggested. The results show that the multi-modal framework outperforms the current state-of-the-art image-based or text-based models. Several challenges are outlined for this task. More efforts and resources are needed for this classification task in order to reach a satisfactory level.

* 21 pages, 6 figures, 3 tables. arXiv admin note: substantial text overlap with arXiv:2011.07658 

  Access Paper or Ask Questions

Tasks Integrated Networks: Joint Detection and Retrieval for Image Search

Sep 03, 2020
Lei Zhang, Zhenwei He, Yi Yang, Liang Wang, Xinbo Gao

The traditional object retrieval task aims to learn a discriminative feature representation with intra-similarity and inter-dissimilarity, which supposes that the objects in an image are manually or automatically pre-cropped exactly. However, in many real-world searching scenarios (e.g., video surveillance), the objects (e.g., persons, vehicles, etc.) are seldom accurately detected or annotated. Therefore, object-level retrieval becomes intractable without bounding-box annotation, which leads to a new but challenging topic, i.e. image-level search. In this paper, to address the image search issue, we first introduce an end-to-end Integrated Net (I-Net), which has three merits: 1) A Siamese architecture and an on-line pairing strategy for similar and dissimilar objects in the given images are designed. 2) A novel on-line pairing (OLP) loss is introduced with a dynamic feature dictionary, which alleviates the multi-task training stagnation problem, by automatically generating a number of negative pairs to restrict the positives. 3) A hard example priority (HEP) based softmax loss is proposed to improve the robustness of classification task by selecting hard categories. With the philosophy of divide and conquer, we further propose an improved I-Net, called DC-I-Net, which makes two new contributions: 1) two modules are tailored to handle different tasks separately in the integrated framework, such that the task specification is guaranteed. 2) A class-center guided HEP loss (C2HEP) by exploiting the stored class centers is proposed, such that the intra-similarity and inter-dissimilarity can be captured for ultimate retrieval. Extensive experiments on famous image-level search oriented benchmark datasets demonstrate that the proposed DC-I-Net outperforms the state-of-the-art tasks-integrated and tasks-separated image search models.

* To appear in IEEE TPAMI, 18 pages 

  Access Paper or Ask Questions

Scalable Low-Rank Autoregressive Tensor Learning for Spatiotemporal Traffic Data Imputation

Aug 07, 2020
Xinyu Chen, Yixian Chen, Lijun Sun

Missing value problem in spatiotemporal traffic data has long been a challenging topic, in particular for large-scale and high-dimensional data with complex missing mechanisms and diverse degrees of missingness. Recent studies based on tensor nuclear norm have demonstrated the superiority of tensor learning in imputation tasks by effectively characterizing the complex correlations/dependencies in spatiotemporal data. However, despite the promising results, these approaches do not scale well to large tensors. In this paper, we focus on addressing the missing data imputation problem for large-scale spatiotemporal traffic data. To achieve both high accuracy and efficiency, we develop a scalable autoregressive tensor learning model---Low-Tubal-Rank Autoregressive Tensor Completion (LATC-Tubal)---based on the existing framework of Low-Rank Autoregressive Tensor Completion (LATC), which is well-suited for spatiotemporal traffic data that characterized by multidimensional structure of location$\times$ time of day $\times$ day. In particular, the proposed LATC-Tubal model involves a scalable tensor nuclear norm minimization scheme by integrating linear unitary transformation. Therefore, the tensor nuclear norm minimization can be solved by singular value thresholding on the transformed matrix of each day while the day-to-day correlation can be effectively preserved by the unitary transform matrix. Before setting up the experiment, we consider two large-scale 5-minute traffic speed data sets collected by the California PeMS system with 11160 sensors. We compare LATC-Tubal with state-of-the-art baseline models, and find that LATC-Tubal can achieve competitively accuracy with a significantly lower computational cost. In addition, the LATC-Tubal will also benefit other tasks in modeling large-scale spatiotemporal traffic data, such as network-level traffic forecasting.

  Access Paper or Ask Questions

MANTIS: Model-Augmented Neural neTwork with Incoherent k-space Sampling for efficient MR T2 mapping

Sep 02, 2018
Fang Liu, Li Feng, Richard Kijowski

Quantitative mapping of magnetic resonance (MR) parameters have been shown as valuable methods for improved assessment of a range of diseases. Due to the need to image an anatomic structure multiple times, parameter mapping usually requires long scan times compared to conventional static imaging. Therefore, accelerated parameter mapping is highly-desirable and remains a topic of great interest in the MR research community. While many recent deep learning methods have focused on highly efficient image reconstruction for conventional static MR imaging, applications of deep learning for dynamic imaging and in particular accelerated parameter mapping have been limited. The purpose of this work was to develop and evaluate a novel deep learning-based reconstruction framework called Model-Augmented Neural neTwork with Incoherent k-space Sampling (MANTIS) for efficient MR parameter mapping. Our approach combines end-to-end CNN mapping with k-space consistency using the concept of cyclic loss to further enforce data and model fidelity. Incoherent k-space sampling is used to improve reconstruction performance. A physical model is incorporated into the proposed framework, so that the parameter maps can be efficiently estimated directly from undersampled images. The performance of MANTIS was demonstrated for the spin-spin relaxation time (T2) mapping of the knee joint. Compared to conventional reconstruction approaches that exploited image sparsity, MANTIS yielded lower errors and higher similarity with respect to the reference in the T2 estimation. Our study demonstrated that the proposed MANTIS framework, with a combination of end-to-end CNN mapping, signal model-augmented data consistency, and incoherent k-space sampling, represents a promising approach for efficient MR parameter mapping. MANTIS can potentially be extended to other types of parameter mapping with appropriate models.

  Access Paper or Ask Questions

SALAD: Self-Adaptive Lightweight Anomaly Detection for Real-time Recurrent Time Series

May 04, 2021
Ming-Chang Lee, Jia-Chun Lin, Ernst Gunnar Gran

Real-world time series data often present recurrent or repetitive patterns and it is often generated in real time, such as transportation passenger volume, network traffic, system resource consumption, energy usage, and human gait. Detecting anomalous events based on machine learning approaches in such time series data has been an active research topic in many different areas. However, most machine learning approaches require labeled datasets, offline training, and may suffer from high computation complexity, consequently hindering their applicability. Providing a lightweight self-adaptive approach that does not need offline training in advance and meanwhile is able to detect anomalies in real time could be highly beneficial. Such an approach could be immediately applied and deployed on any commodity machine to provide timely anomaly alerts. To facilitate such an approach, this paper introduces SALAD, which is a Self-Adaptive Lightweight Anomaly Detection approach based on a special type of recurrent neural networks called Long Short-Term Memory (LSTM). Instead of using offline training, SALAD converts a target time series into a series of average absolute relative error (AARE) values on the fly and predicts an AARE value for every upcoming data point based on short-term historical AARE values. If the difference between a calculated AARE value and its corresponding forecast AARE value is higher than a self-adaptive detection threshold, the corresponding data point is considered anomalous. Otherwise, the data point is considered normal. Experiments based on two real-world open-source time series datasets demonstrate that SALAD outperforms five other state-of-the-art anomaly detection approaches in terms of detection accuracy. In addition, the results also show that SALAD is lightweight and can be deployed on a commodity machine.

* 11 pages, 10 figures, and 7 tables. In Proceedings of the 45th IEEE Computer Society Signature Conference on Computers, Software, and Applications (COMPSAC 2021) 

  Access Paper or Ask Questions

Deep Probabilistic Graphical Modeling

Apr 25, 2021
Adji B. Dieng

Probabilistic graphical modeling (PGM) provides a framework for formulating an interpretable generative process of data and expressing uncertainty about unknowns, but it lacks flexibility. Deep learning (DL) is an alternative framework for learning from data that has achieved great empirical success in recent years. DL offers great flexibility, but it lacks the interpretability and calibration of PGM. This thesis develops deep probabilistic graphical modeling (DPGM.) DPGM consists in leveraging DL to make PGM more flexible. DPGM brings about new methods for learning from data that exhibit the advantages of both PGM and DL. We use DL within PGM to build flexible models endowed with an interpretable latent structure. One model class we develop extends exponential family PCA using neural networks to improve predictive performance while enforcing the interpretability of the latent factors. Another model class we introduce enables accounting for long-term dependencies when modeling sequential data, which is a challenge when using purely DL or PGM approaches. Finally, DPGM successfully solves several outstanding problems of probabilistic topic models, a widely used family of models in PGM. DPGM also brings about new algorithms for learning with complex data. We develop reweighted expectation maximization, an algorithm that unifies several existing maximum likelihood-based algorithms for learning models parameterized by neural networks. This unifying view is made possible using expectation maximization, a canonical inference algorithm in PGM. We also develop entropy-regularized adversarial learning, a learning paradigm that deviates from the traditional maximum likelihood approach used in PGM. From the DL perspective, entropy-regularized adversarial learning provides a solution to the long-standing mode collapse problem of generative adversarial networks, a widely used DL approach.

* This thesis was defended in April 2020 and accepted without revision. The author received her PhD in Statistics from Columbia University on May 20, 2020 

  Access Paper or Ask Questions

Cloze Test Helps: Effective Video Anomaly Detection via Learning to Complete Video Events

Aug 27, 2020
Guang Yu, Siqi Wang, Zhiping Cai, En Zhu, Chuanfu Xu, Jianping Yin, Marius Kloft

As a vital topic in media content interpretation, video anomaly detection (VAD) has made fruitful progress via deep neural network (DNN). However, existing methods usually follow a reconstruction or frame prediction routine. They suffer from two gaps: (1) They cannot localize video activities in a both precise and comprehensive manner. (2) They lack sufficient abilities to utilize high-level semantics and temporal context information. Inspired by frequently-used cloze test in language study, we propose a brand-new VAD solution named Video Event Completion (VEC) to bridge gaps above: First, we propose a novel pipeline to achieve both precise and comprehensive enclosure of video activities. Appearance and motion are exploited as mutually complimentary cues to localize regions of interest (RoIs). A normalized spatio-temporal cube (STC) is built from each RoI as a video event, which lays the foundation of VEC and serves as a basic processing unit. Second, we encourage DNN to capture high-level semantics by solving a visual cloze test. To build such a visual cloze test, a certain patch of STC is erased to yield an incomplete event (IE). The DNN learns to restore the original video event from the IE by inferring the missing patch. Third, to incorporate richer motion dynamics, another DNN is trained to infer erased patches' optical flow. Finally, two ensemble strategies using different types of IE and modalities are proposed to boost VAD performance, so as to fully exploit the temporal context and modality information for VAD. VEC can consistently outperform state-of-the-art methods by a notable margin (typically 1.5%-5% AUROC) on commonly-used VAD benchmarks. Our codes and results can be verified at

* To be published as an oral paper in Proceedings of the 28th ACM International Conference on Multimedia (ACM MM '20). 9 pages, 7 figures 

  Access Paper or Ask Questions