Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Topic": models, code, and papers

Towards Understanding Trends Manipulation in Pakistan Twitter

Sep 30, 2021
Soufia Kausar, Bilal Tahir, Muhammad Amir Mehmood

The rapid adoption of online social media platforms has transformed the way of communication and interaction. On these platforms, discussions in the form of trending topics provide a glimpse of events happening around the world in real-time. Also, these trends are used for political campaigns, public awareness, and brand promotions. Consequently, these trends are sensitive to manipulation by malicious users who aim to mislead the mass audience. In this article, we identify and study the characteristics of users involved in the manipulation of Twitter trends in Pakistan. We propose 'Manipify', a framework for automatic detection and analysis of malicious users for Twitter trends. Our framework consists of three distinct modules: i) user classifier, ii) hashtag classifier, and ii) trend analyzer. The user classifier introduces a novel approach to automatically detect manipulators using tweet content and user behaviour features. Also, the module classifies human and bot users. Next, the hashtag classifier categorizes trending hashtags into six categories assisting in examining manipulators behaviour across different categories. Finally, the trend analyzer module examines users, hashtags, and tweets for hashtag reach, linguistic features and user behaviour. Our user classifier module achieves 0.91 accuracy in classifying the manipulators. We further test Manipify on the dataset comprising of 665 trending hashtags with 5.4 million tweets and 1.9 million users. The analysis of trends reveals that the trending panel is mostly dominated by political hashtags. In addition, our results show a higher contribution of human accounts in trend manipulation as compared to bots. Furthermore, we present two case studies of hashtag-wars and anti-state propaganda to implicate the real-world application of our research.

  Access Paper or Ask Questions

Impacts Towards a comprehensive assessment of the book impact by integrating multiple evaluation sources

Jul 22, 2021
Qingqing Zhou, Chengzhi Zhang

The surge in the number of books published makes the manual evaluation methods difficult to efficiently evaluate books. The use of books' citations and alternative evaluation metrics can assist manual evaluation and reduce the cost of evaluation. However, most existing evaluation research was based on a single evaluation source with coarse-grained analysis, which may obtain incomprehensive or one-sided evaluation results of book impact. Meanwhile, relying on a single resource for book assessment may lead to the risk that the evaluation results cannot be obtained due to the lack of the evaluation data, especially for newly published books. Hence, this paper measured book impact based on an evaluation system constructed by integrating multiple evaluation sources. Specifically, we conducted finer-grained mining on the multiple evaluation sources, including books' internal evaluation resources and external evaluation resources. Various technologies (e.g. topic extraction, sentiment analysis, text classification) were used to extract corresponding evaluation metrics from the internal and external evaluation resources. Then, Expert evaluation combined with analytic hierarchy process was used to integrate the evaluation metrics and construct a book impact evaluation system. Finally, the reliability of the evaluation system was verified by comparing with the results of expert evaluation, detailed and diversified evaluation results were then obtained. The experimental results reveal that differential evaluation resources can measure the books' impacts from different dimensions, and the integration of multiple evaluation data can assess books more comprehensively. Meanwhile, the book impact evaluation system can provide personalized evaluation results according to the users' evaluation purposes. In addition, the disciplinary differences should be considered for assessing books' impacts.

* Journal of Informetrics, 2021. 15(3): 101162 

  Access Paper or Ask Questions

Multi-Level Graph Encoding with Structural-Collaborative Relation Learning for Skeleton-Based Person Re-Identification

Jun 06, 2021
Haocong Rao, Shihao Xu, Xiping Hu, Jun Cheng, Bin Hu

Skeleton-based person re-identification (Re-ID) is an emerging open topic providing great value for safety-critical applications. Existing methods typically extract hand-crafted features or model skeleton dynamics from the trajectory of body joints, while they rarely explore valuable relation information contained in body structure or motion. To fully explore body relations, we construct graphs to model human skeletons from different levels, and for the first time propose a Multi-level Graph encoding approach with Structural-Collaborative Relation learning (MG-SCR) to encode discriminative graph features for person Re-ID. Specifically, considering that structurally-connected body components are highly correlated in a skeleton, we first propose a multi-head structural relation layer to learn different relations of neighbor body-component nodes in graphs, which helps aggregate key correlative features for effective node representations. Second, inspired by the fact that body-component collaboration in walking usually carries recognizable patterns, we propose a cross-level collaborative relation layer to infer collaboration between different level components, so as to capture more discriminative skeleton graph features. Finally, to enhance graph dynamics encoding, we propose a novel self-supervised sparse sequential prediction task for model pre-training, which facilitates encoding high-level graph semantics for person Re-ID. MG-SCR outperforms state-of-the-art skeleton-based methods, and it achieves superior performance to many multi-modal methods that utilize extra RGB or depth features. Our codes are available at

* In IJCAI, 2021 
* Accepted at IJCAI 2021 Main Track. Sole copyright holder is IJCAI. Codes are available at 

  Access Paper or Ask Questions

Informational Space of Meaning for Scientific Texts

Apr 28, 2020
Neslihan Suzen, Evgeny M. Mirkes, Alexander N. Gorban

In Natural Language Processing, automatic extracting the meaning of texts constitutes an important problem. Our focus is the computational analysis of meaning of short scientific texts (abstracts or brief reports). In this paper, a vector space model is developed for quantifying the meaning of words and texts. We introduce the Meaning Space, in which the meaning of a word is represented by a vector of Relative Information Gain (RIG) about the subject categories that the text belongs to, which can be obtained from observing the word in the text. This new approach is applied to construct the Meaning Space based on Leicester Scientific Corpus (LSC) and Leicester Scientific Dictionary-Core (LScDC). The LSC is a scientific corpus of 1,673,350 abstracts and the LScDC is a scientific dictionary which words are extracted from the LSC. Each text in the LSC belongs to at least one of 252 subject categories of Web of Science (WoS). These categories are used in construction of vectors of information gains. The Meaning Space is described and statistically analysed for the LSC with the LScDC. The usefulness of the proposed representation model is evaluated through top-ranked words in each category. The most informative n words are ordered. We demonstrated that RIG-based word ranking is much more useful than ranking based on raw word frequency in determining the science-specific meaning and importance of a word. The proposed model based on RIG is shown to have ability to stand out topic-specific words in categories. The most informative words are presented for 252 categories. The new scientific dictionary and the 103,998 x 252 Word-Category RIG Matrix are available online. Analysis of the Meaning Space provides us with a tool to further explore quantifying the meaning of a text using more complex and context-dependent meaning models that use co-occurrence of words and their combinations.

* 320 pages 

  Access Paper or Ask Questions

Neighborhood Information-based Probabilistic Algorithm for Network Disintegration

Mar 08, 2020
Qian Li, San-Yang Liu, Xin-She Yang

Many real-world applications can be modelled as complex networks, and such networks include the Internet, epidemic disease networks, transport networks, power grids, protein-folding structures and others. Network integrity and robustness are important to ensure that crucial networks are protected and undesired harmful networks can be dismantled. Network structure and integrity can be controlled by a set of key nodes, and to find the optimal combination of nodes in a network to ensure network structure and integrity can be an NP-complete problem. Despite extensive studies, existing methods have many limitations and there are still many unresolved problems. This paper presents a probabilistic approach based on neighborhood information and node importance, namely, neighborhood information-based probabilistic algorithm (NIPA). We also define a new centrality-based importance measure (IM), which combines the contribution ratios of the neighbor nodes of each target node and two-hop node information. Our proposed NIPA has been tested for different network benchmarks and compared with three other methods: optimal attack strategy (OAS), high betweenness first (HBF) and high degree first (HDF). Experiments suggest that the proposed NIPA is most effective among all four methods. In general, NIPA can identify the most crucial node combination with higher effectiveness, and the set of optimal key nodes found by our proposed NIPA is much smaller than that by heuristic centrality prediction. In addition, many previously neglected weakly connected nodes are identified, which become a crucial part of the newly identified optimal nodes. Thus, revised strategies for protection are recommended to ensure the safeguard of network integrity. Further key issues and future research topics are also discussed.

* Expert Systems with Applications, Volume 139, (2020), Article 112853 
* 25 pages, 13 figures, 2 tables 

  Access Paper or Ask Questions

Bias-aware model selection for machine learning of doubly robust functionals

Nov 05, 2019
Yifan Cui, Eric Tchetgen Tchetgen

While model selection is a well-studied topic in parametric and nonparametric regression or density estimation, model selection of possibly high dimensional nuisance parameters in semiparametric problems is far less developed. In this paper, we propose a new model selection framework for making inferences about a finite dimensional functional defined on a semiparametric model, when the latter admits a doubly robust estimating function. The class of such doubly robust functionals is quite large, including many missing data and causal inference problems. Under double robustness, the estimated functional should incur no bias if either of two nuisance parameters is evaluated at the truth while the other spans a large collection of candidate models. We introduce two model selection criteria for bias reduction of functional of interest, each based on a novel definition of pseudo-risk for the functional that embodies this double robustness property and thus may be used to select the candidate model that is nearest to fulfilling this property even when all models are wrong. Both selection criteria have a bias awareness property that selection of one nuisance parameter can be made to compensate for excessive bias due to poor learning of the other nuisance parameter. We establish an oracle property for a multi-fold cross-validation version of the new model selection criteria which states that our empirical criteria perform nearly as well as an oracle with a priori knowledge of the pseudo-risk for each candidate model. We also describe a smooth approximation to the selection criteria which allows for valid post-selection inference. Finally, we perform model selection of a semiparametric estimator of average treatment effect given an ensemble of candidate machine learning methods to account for confounding in a study of right heart catheterization in the ICU of critically ill patients.

  Access Paper or Ask Questions

PID: A New Benchmark Dataset to Classify and Densify Pavement Distresses

Oct 20, 2019
Hamed Majidifard, Peng Jin, Yaw Adu-Gyamfi, William G. Buttlar

Automated pavement distresses detection using road images remains a challenging topic in the computer vision research community. Recent developments in deep learning has led to considerable research activity directed towards improving the efficacy of automated pavement distress identification and rating. Deep learning models require a large ground truth data set, which is often not readily available in the case of pavements. In this study, a labeled dataset approach is introduced as a first step towards a more robust, easy-to-deploy pavement condition assessment system. The technique is termed herein as the Pavement Image Dataset (PID) method. The dataset consists of images captured from two camera views of an identical pavement segment, i.e., a wide-view and a top-down view. The wide-view images were used to classify the distresses and to train the deep learning frameworks, while the top-down view images allowed calculation of distress density, which will be used in future studies aimed at automated pavement rating. For the wide view group dataset, 7,237 images were manually annotated and distresses classified into nine categories. Images were extracted using the Google Application Programming Interface (API), selecting street-view images using a python-based code developed for this project. The new dataset was evaluated using two mainstream deep learning frameworks: You Only Look Once (YOLO v2) and Faster Region Convolution Neural Network (Faster R-CNN). Accuracy scores using the F1 index were found to be 0.84 for YOLOv2 and 0.65 for the Faster R-CNN model runs; both quite acceptable considering the convenience of utilizing Google maps images.

  Access Paper or Ask Questions

A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction

Oct 14, 2017
Eunhee Kang, Junhong Min, Jong Chul Ye

Due to the potential risk of inducing cancers, radiation dose of X-ray CT should be reduced for routine patient scanning. However, in low-dose X-ray CT, severe artifacts usually occur due to photon starvation, beamhardening, etc, which decrease the reliability of diagnosis. Thus, high quality reconstruction from low-dose X-ray CT data has become one of the important research topics in CT community. Conventional model-based denoising approaches are, however, computationally very expensive, and image domain denoising approaches hardly deal with CT specific noise patterns. To address these issues, we propose an algorithm using a deep convolutional neural network (CNN), which is applied to wavelet transform coefficients of low-dose CT images. Specifically, by using a directional wavelet transform for extracting directional component of artifacts and exploiting the intra- and inter-band correlations, our deep network can effectively suppress CT specific noises. Moreover, our CNN is designed to have various types of residual learning architecture for faster network training and better denoising. Experimental results confirm that the proposed algorithm effectively removes complex noise patterns of CT images, originated from the reduced X-ray dose. In addition, we show that wavelet domain CNN is efficient in removing the noises from low-dose CT compared to an image domain CNN. Our results were rigorously evaluated by several radiologists and won the second place award in 2016 AAPM Low-Dose CT Grand Challenge. To the best of our knowledge, this work is the first deep learning architecture for low-dose CT reconstruction that has been rigorously evaluated and proven for its efficacy.

* Will appear in Medical Physics (invited paper); 2016 AAPM low-dose CT Grand Challenge 2nd Place Award 

  Access Paper or Ask Questions

Multi-view Graph Embedding with Hub Detection for Brain Network Analysis

Sep 12, 2017
Guixiang Ma, Chun-Ta Lu, Lifang He, Philip S. Yu, Ann B. Ragin

Multi-view graph embedding has become a widely studied problem in the area of graph learning. Most of the existing works on multi-view graph embedding aim to find a shared common node embedding across all the views of the graph by combining the different views in a specific way. Hub detection, as another essential topic in graph mining has also drawn extensive attentions in recent years, especially in the context of brain network analysis. Both the graph embedding and hub detection relate to the node clustering structure of graphs. The multi-view graph embedding usually implies the node clustering structure of the graph based on the multiple views, while the hubs are the boundary-spanning nodes across different node clusters in the graph and thus may potentially influence the clustering structure of the graph. However, none of the existing works in multi-view graph embedding considered the hubs when learning the multi-view embeddings. In this paper, we propose to incorporate the hub detection task into the multi-view graph embedding framework so that the two tasks could benefit each other. Specifically, we propose an auto-weighted framework of Multi-view Graph Embedding with Hub Detection (MVGE-HD) for brain network analysis. The MVGE-HD framework learns a unified graph embedding across all the views while reducing the potential influence of the hubs on blurring the boundaries between node clusters in the graph, thus leading to a clear and discriminative node clustering structure for the graph. We apply MVGE-HD on two real multi-view brain network datasets (i.e., HIV and Bipolar). The experimental results demonstrate the superior performance of the proposed framework in brain network analysis for clinical investigation and application.

  Access Paper or Ask Questions

Deep Steering: Learning End-to-End Driving Model from Spatial and Temporal Visual Cues

Aug 12, 2017
Lu Chi, Yadong Mu

In recent years, autonomous driving algorithms using low-cost vehicle-mounted cameras have attracted increasing endeavors from both academia and industry. There are multiple fronts to these endeavors, including object detection on roads, 3-D reconstruction etc., but in this work we focus on a vision-based model that directly maps raw input images to steering angles using deep networks. This represents a nascent research topic in computer vision. The technical contributions of this work are three-fold. First, the model is learned and evaluated on real human driving videos that are time-synchronized with other vehicle sensors. This differs from many prior models trained from synthetic data in racing games. Second, state-of-the-art models, such as PilotNet, mostly predict the wheel angles independently on each video frame, which contradicts common understanding of driving as a stateful process. Instead, our proposed model strikes a combination of spatial and temporal cues, jointly investigating instantaneous monocular camera observations and vehicle's historical states. This is in practice accomplished by inserting carefully-designed recurrent units (e.g., LSTM and Conv-LSTM) at proper network layers. Third, to facilitate the interpretability of the learned model, we utilize a visual back-propagation scheme for discovering and visualizing image regions crucially influencing the final steering prediction. Our experimental study is based on about 6 hours of human driving data provided by Udacity. Comprehensive quantitative evaluations demonstrate the effectiveness and robustness of our model, even under scenarios like drastic lighting changes and abrupt turning. The comparison with other state-of-the-art models clearly reveals its superior performance in predicting the due wheel angle for a self-driving car.

* 12 pages, 15 figures 

  Access Paper or Ask Questions