Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Topic": models, code, and papers

Using Semantic Similarity for Input Topic Identification in Crawling-based Web Application Testing

Aug 23, 2016
Jun-Wei Lin, Farn Wang

To automatically test web applications, crawling-based techniques are usually adopted to mine the behavior models, explore the state spaces or detect the violated invariants of the applications. However, in existing crawlers, rules for identifying the topics of input text fields, such as login ids, passwords, emails, dates and phone numbers, have to be manually configured. Moreover, the rules for one application are very often not suitable for another. In addition, when several rules conflict and match an input text field to more than one topics, it can be difficult to determine which rule suggests a better match. This paper presents a natural-language approach to automatically identify the topics of encountered input fields during crawling by semantically comparing their similarities with the input fields in labeled corpus. In our evaluation with 100 real-world forms, the proposed approach demonstrated comparable performance to the rule-based one. Our experiments also show that the accuracy of the rule-based approach can be improved by up to 19% when integrated with our approach.

* 11 pages 

  Access Paper or Ask Questions

Investor Reaction to Financial Disclosures Across Topics: An Application of Latent Dirichlet Allocation

May 08, 2018
Stefan Feuerriegel, Nicolas Pröllochs

This paper provides a holistic study of how stock prices vary in their response to financial disclosures across different topics. Thereby, we specifically shed light into the extensive amount of filings for which no a priori categorization of their content exists. For this purpose, we utilize an approach from data mining - namely, latent Dirichlet allocation - as a means of topic modeling. This technique facilitates our task of automatically categorizing, ex ante, the content of more than 70,000 regulatory 8-K filings from U.S. companies. We then evaluate the subsequent stock market reaction. Our empirical evidence suggests a considerable discrepancy among various types of news stories in terms of their relevance and impact on financial markets. For instance, we find a statistically significant abnormal return in response to earnings results and credit rating, but also for disclosures regarding business strategy, the health sector, as well as mergers and acquisitions. Our results yield findings that benefit managers, investors and policy-makers by indicating how regulatory filings should be structured and the topics most likely to precede changes in stock valuations.


  Access Paper or Ask Questions

Exploring the Political Agenda of the European Parliament Using a Dynamic Topic Modeling Approach

Jul 11, 2016
Derek Greene, James P. Cross

This study analyzes the political agenda of the European Parliament (EP) plenary, how it has evolved over time, and the manner in which Members of the European Parliament (MEPs) have reacted to external and internal stimuli when making plenary speeches. To unveil the plenary agenda and detect latent themes in legislative speeches over time, MEP speech content is analyzed using a new dynamic topic modeling method based on two layers of Non-negative Matrix Factorization (NMF). This method is applied to a new corpus of all English language legislative speeches in the EP plenary from the period 1999-2014. Our findings suggest that two-layer NMF is a valuable alternative to existing dynamic topic modeling approaches found in the literature, and can unveil niche topics and associated vocabularies not captured by existing methods. Substantively, our findings suggest that the political agenda of the EP evolves significantly over time and reacts to exogenous events such as EU Treaty referenda and the emergence of the Euro-crisis. MEP contributions to the plenary agenda are also found to be impacted upon by voting behaviour and the committee structure of the Parliament.

* Long version including appendix. arXiv admin note: substantial text overlap with arXiv:1505.07302 

  Access Paper or Ask Questions

Topic-Enhanced Memory Networks for Personalised Point-of-Interest Recommendation

May 19, 2019
Xiao Zhou, Cecilia Mascolo, Zhongxiang Zhao

Point-of-Interest (POI) recommender systems play a vital role in people's lives by recommending unexplored POIs to users and have drawn extensive attention from both academia and industry. Despite their value, however, they still suffer from the challenges of capturing complicated user preferences and fine-grained user-POI relationship for spatio-temporal sensitive POI recommendation. Existing recommendation algorithms, including both shallow and deep approaches, usually embed the visiting records of a user into a single latent vector to model user preferences: this has limited power of representation and interpretability. In this paper, we propose a novel topic-enhanced memory network (TEMN), a deep architecture to integrate the topic model and memory network capitalising on the strengths of both the global structure of latent patterns and local neighbourhood-based features in a nonlinear fashion. We further incorporate a geographical module to exploit user-specific spatial preference and POI-specific spatial influence to enhance recommendations. The proposed unified hybrid model is widely applicable to various POI recommendation scenarios. Extensive experiments on real-world WeChat datasets demonstrate its effectiveness (improvement ratio of 3.25% and 29.95% for context-aware and sequential recommendation, respectively). Also, qualitative analysis of the attention weights and topic modeling provides insight into the model's recommendation process and results.

* 11 pages, 6 figures, The 25th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD '19) 

  Access Paper or Ask Questions

Learning to Rank Question-Answer Pairs using Hierarchical Recurrent Encoder with Latent Topic Clustering

Apr 09, 2018
Seunghyun Yoon, Joongbo Shin, Kyomin Jung

In this paper, we propose a novel end-to-end neural architecture for ranking candidate answers, that adapts a hierarchical recurrent neural network and a latent topic clustering module. With our proposed model, a text is encoded to a vector representation from an word-level to a chunk-level to effectively capture the entire meaning. In particular, by adapting the hierarchical structure, our model shows very small performance degradations in longer text comprehension while other state-of-the-art recurrent neural network models suffer from it. Additionally, the latent topic clustering module extracts semantic information from target samples. This clustering module is useful for any text related tasks by allowing each data sample to find its nearest topic cluster, thus helping the neural network model analyze the entire data. We evaluate our models on the Ubuntu Dialogue Corpus and consumer electronic domain question answering dataset, which is related to Samsung products. The proposed model shows state-of-the-art results for ranking question-answer pairs.

* 10 pages, Accepted as a conference paper at NAACL 2018 

  Access Paper or Ask Questions

Improving Collaborative Filtering based Recommenders using Topic Modelling

Feb 25, 2014
Jobin Wilson, Santanu Chaudhury, Brejesh Lall, Prateek Kapadia

Standard Collaborative Filtering (CF) algorithms make use of interactions between users and items in the form of implicit or explicit ratings alone for generating recommendations. Similarity among users or items is calculated purely based on rating overlap in this case,without considering explicit properties of users or items involved, limiting their applicability in domains with very sparse rating spaces. In many domains such as movies, news or electronic commerce recommenders, considerable contextual data in text form describing item properties is available along with the rating data, which could be utilized to improve recommendation quality.In this paper, we propose a novel approach to improve standard CF based recommenders by utilizing latent Dirichlet allocation (LDA) to learn latent properties of items, expressed in terms of topic proportions, derived from their textual description. We infer user's topic preferences or persona in the same latent space,based on her historical ratings. While computing similarity between users, we make use of a combined similarity measure involving rating overlap as well as similarity in the latent topic space. This approach alleviates sparsity problem as it allows calculation of similarity between users even if they have not rated any items in common. Our experiments on multiple public datasets indicate that the proposed hybrid approach significantly outperforms standard user Based and item Based CF recommenders in terms of classification accuracy metrics such as precision, recall and f-measure.


  Access Paper or Ask Questions

Learning Stance Embeddings from Signed Social Graphs

Jan 27, 2022
John Pougué-Biyong, Akshay Gupta, Aria Haghighi, Ahmed El-Kishky

A key challenge in social network analysis is understanding the position, or stance, of people in the graph on a large set of topics. While past work has modeled (dis)agreement in social networks using signed graphs, these approaches have not modeled agreement patterns across a range of correlated topics. For instance, disagreement on one topic may make disagreement(or agreement) more likely for related topics. We propose the Stance Embeddings Model(SEM), which jointly learns embeddings for each user and topic in signed social graphs with distinct edge types for each topic. By jointly learning user and topic embeddings, SEM is able to perform cold-start topic stance detection, predicting the stance of a user on topics for which we have not observed their engagement. We demonstrate the effectiveness of SEM using two large-scale Twitter signed graph datasets we open-source. One dataset, TwitterSG, labels (dis)agreements using engagements between users via tweets to derive topic-informed, signed edges. The other, BirdwatchSG, leverages community reports on misinformation and misleading content. On TwitterSG and BirdwatchSG, SEM shows a 39% and 26% error reduction respectively against strong baselines.


  Access Paper or Ask Questions

GitRanking: A Ranking of GitHub Topics for Software Classification using Active Sampling

May 19, 2022
Cezar Sas, Andrea Capiluppi, Claudio Di Sipio, Juri Di Rocco, Davide Di Ruscio

GitHub is the world's largest host of source code, with more than 150M repositories. However, most of these repositories are not labeled or inadequately so, making it harder for users to find relevant projects. There have been various proposals for software application domain classification over the past years. However, these approaches lack a well-defined taxonomy that is hierarchical, grounded in a knowledge base, and free of irrelevant terms. This work proposes GitRanking, a framework for creating a classification ranked into discrete levels based on how general or specific their meaning is. We collected 121K topics from GitHub and considered $60\%$ of the most frequent ones for the ranking. GitRanking 1) uses active sampling to ensure a minimal number of required annotations; and 2) links each topic to Wikidata, reducing ambiguities and improving the reusability of the taxonomy. Our results show that developers, when annotating their projects, avoid using terms with a high degree of specificity. This makes the finding and discovery of their projects more challenging for other users. Furthermore, we show that GitRanking can effectively rank terms according to their general or specific meaning. This ranking would be an essential asset for developers to build upon, allowing them to complement their annotations with more precise topics. Finally, we show that GitRanking is a dynamically extensible method: it can currently accept further terms to be ranked with a minimum number of annotations ($\sim$ 15). This paper is the first collective attempt to build a ground-up taxonomy of software domains.

* 11 pages, 6 figures, 3 tables 

  Access Paper or Ask Questions

Adversarial Learning of Poisson Factorisation Model for Gauging Brand Sentiment in User Reviews

Jan 25, 2021
Runcong Zhao, Lin Gui, Gabriele Pergola, Yulan He

In this paper, we propose the Brand-Topic Model (BTM) which aims to detect brand-associated polarity-bearing topics from product reviews. Different from existing models for sentiment-topic extraction which assume topics are grouped under discrete sentiment categories such as `positive', `negative' and `neural', BTM is able to automatically infer real-valued brand-associated sentiment scores and generate fine-grained sentiment-topics in which we can observe continuous changes of words under a certain topic (e.g., `shaver' or `cream') while its associated sentiment gradually varies from negative to positive. BTM is built on the Poisson factorisation model with the incorporation of adversarial learning. It has been evaluated on a dataset constructed from Amazon reviews. Experimental results show that BTM outperforms a number of competitive baselines in brand ranking, achieving a better balance of topic coherence and uniqueness, and extracting better-separated polarity-bearing topics.


  Access Paper or Ask Questions

Joint Lifelong Topic Model and Manifold Ranking for Document Summarization

Jul 07, 2019
Jianying Lin, Rui Liu, Quanye Jia

Due to the manifold ranking method has a significant effect on the ranking of unknown data based on known data by using a weighted network, many researchers use the manifold ranking method to solve the document summarization task. However, their models only consider the original features but ignore the semantic features of sentences when they construct the weighted networks for the manifold ranking method. To solve this problem, we proposed two improved models based on the manifold ranking method. One is combining the topic model and manifold ranking method (JTMMR) to solve the document summarization task. This model not only uses the original feature, but also uses the semantic feature to represent the document, which can improve the accuracy of the manifold ranking method. The other one is combining the lifelong topic model and manifold ranking method (JLTMMR). On the basis of the JTMMR, this model adds the constraint of knowledge to improve the quality of the topic. At the same time, we also add the constraint of the relationship between documents to dig out a better document semantic features. The JTMMR model can improve the effect of the manifold ranking method by using the better semantic feature. Experiments show that our models can achieve a better result than other baseline models for multi-document summarization task. At the same time, our models also have a good performance on the single document summarization task. After combining with a few basic surface features, our model significantly outperforms some model based on deep learning in recent years. After that, we also do an exploring work for lifelong machine learning by analyzing the effect of adding feedback. Experiments show that the effect of adding feedback to our model is significant.

* 28 pages, 7 figures 

  Access Paper or Ask Questions

<<
53
54
55
56
57
58
59
60
61
62
63
64
65
>>