Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Topic": models, code, and papers

Hybrid Recommender Systems: A Systematic Literature Review

Jan 12, 2019
Erion Çano, Maurizio Morisio

Recommender systems are software tools used to generate and provide suggestions for items and other entities to the users by exploiting various strategies. Hybrid recommender systems combine two or more recommendation strategies in different ways to benefit from their complementary advantages. This systematic literature review presents the state of the art in hybrid recommender systems of the last decade. It is the first quantitative review work completely focused in hybrid recommenders. We address the most relevant problems considered and present the associated data mining and recommendation techniques used to overcome them. We also explore the hybridization classes each hybrid recommender belongs to, the application domains, the evaluation process and proposed future research directions. Based on our findings, most of the studies combine collaborative filtering with another technique often in a weighted way. Also cold-start and data sparsity are the two traditional and top problems being addressed in 23 and 22 studies each, while movies and movie datasets are still widely used by most of the authors. As most of the studies are evaluated by comparisons with similar methods using accuracy metrics, providing more credible and user oriented evaluations remains a typical challenge. Besides this, newer challenges were also identified such as responding to the variation of user context, evolving user tastes or providing cross-domain recommendations. Being a hot topic, hybrid recommenders represent a good basis with which to respond accordingly by exploring newer opportunities such as contextualizing recommendations, involving parallel hybrid algorithms, processing larger datasets, etc.

* Intelligent Data Analysis, vol. 21, no. 6, pp. 1487-1524, 2017 
* 38 pages, 9 figures, 14 tables. The final authenticated version is available online at https://content.iospress.com/articles/intelligent-data-analysis/ida163209 

  Access Paper or Ask Questions

Cascaded Pyramid Network for Multi-Person Pose Estimation

Apr 08, 2018
Yilun Chen, Zhicheng Wang, Yuxiang Peng, Zhiqiang Zhang, Gang Yu, Jian Sun

The topic of multi-person pose estimation has been largely improved recently, especially with the development of convolutional neural network. However, there still exist a lot of challenging cases, such as occluded keypoints, invisible keypoints and complex background, which cannot be well addressed. In this paper, we present a novel network structure called Cascaded Pyramid Network (CPN) which targets to relieve the problem from these "hard" keypoints. More specifically, our algorithm includes two stages: GlobalNet and RefineNet. GlobalNet is a feature pyramid network which can successfully localize the "simple" keypoints like eyes and hands but may fail to precisely recognize the occluded or invisible keypoints. Our RefineNet tries explicitly handling the "hard" keypoints by integrating all levels of feature representations from the GlobalNet together with an online hard keypoint mining loss. In general, to address the multi-person pose estimation problem, a top-down pipeline is adopted to first generate a set of human bounding boxes based on a detector, followed by our CPN for keypoint localization in each human bounding box. Based on the proposed algorithm, we achieve state-of-art results on the COCO keypoint benchmark, with average precision at 73.0 on the COCO test-dev dataset and 72.1 on the COCO test-challenge dataset, which is a 19% relative improvement compared with 60.5 from the COCO 2016 keypoint challenge.Code (https://github.com/chenyilun95/tf-cpn.git) and the detection results are publicly available for further research.

* 10 pages, accepted to CVPR 2018 

  Access Paper or Ask Questions

Active learning in annotating micro-blogs dealing with e-reputation

Sep 25, 2017
Jean-Valère Cossu, Alejandro Molina-Villegas, Mariana Tello-Signoret

Elections unleash strong political views on Twitter, but what do people really think about politics? Opinion and trend mining on micro blogs dealing with politics has recently attracted researchers in several fields including Information Retrieval and Machine Learning (ML). Since the performance of ML and Natural Language Processing (NLP) approaches are limited by the amount and quality of data available, one promising alternative for some tasks is the automatic propagation of expert annotations. This paper intends to develop a so-called active learning process for automatically annotating French language tweets that deal with the image (i.e., representation, web reputation) of politicians. Our main focus is on the methodology followed to build an original annotated dataset expressing opinion from two French politicians over time. We therefore review state of the art NLP-based ML algorithms to automatically annotate tweets using a manual initiation step as bootstrap. This paper focuses on key issues about active learning while building a large annotated data set from noise. This will be introduced by human annotators, abundance of data and the label distribution across data and entities. In turn, we show that Twitter characteristics such as the author's name or hashtags can be considered as the bearing point to not only improve automatic systems for Opinion Mining (OM) and Topic Classification but also to reduce noise in human annotations. However, a later thorough analysis shows that reducing noise might induce the loss of crucial information.

* Journal of Interdisciplinary Methodologies and Issues in Sciences, Digital Contextualization (October 3, 2017) jimis:3970 
* Journal of Interdisciplinary Methodologies and Issues in Science - Vol 3 - Contextualisation digitale - 2017 

  Access Paper or Ask Questions

Improving training of deep neural networks via Singular Value Bounding

Mar 18, 2017
Kui Jia

Deep learning methods achieve great success recently on many computer vision problems, with image classification and object detection as the prominent examples. In spite of these practical successes, optimization of deep networks remains an active topic in deep learning research. In this work, we focus on investigation of the network solution properties that can potentially lead to good performance. Our research is inspired by theoretical and empirical results that use orthogonal matrices to initialize networks, but we are interested in investigating how orthogonal weight matrices perform when network training converges. To this end, we propose to constrain the solutions of weight matrices in the orthogonal feasible set during the whole process of network training, and achieve this by a simple yet effective method called Singular Value Bounding (SVB). In SVB, all singular values of each weight matrix are simply bounded in a narrow band around the value of 1. Based on the same motivation, we also propose Bounded Batch Normalization (BBN), which improves Batch Normalization by removing its potential risk of ill-conditioned layer transform. We present both theoretical and empirical results to justify our proposed methods. Experiments on benchmark image classification datasets show the efficacy of our proposed SVB and BBN. In particular, we achieve the state-of-the-art results of 3.06% error rate on CIFAR10 and 16.90% on CIFAR100, using off-the-shelf network architectures (Wide ResNets). Our preliminary results on ImageNet also show the promise in large-scale learning.


  Access Paper or Ask Questions

A U.S. Research Roadmap for Human Computation

May 26, 2015
Pietro Michelucci, Lea Shanley, Janis Dickinson, Haym Hirsh

The Web has made it possible to harness human cognition en masse to achieve new capabilities. Some of these successes are well known; for example Wikipedia has become the go-to place for basic information on all things; Duolingo engages millions of people in real-life translation of text, while simultaneously teaching them to speak foreign languages; and fold.it has enabled public-driven scientific discoveries by recasting complex biomedical challenges into popular online puzzle games. These and other early successes hint at the tremendous potential for future crowd-powered capabilities for the benefit of health, education, science, and society. In the process, a new field called Human Computation has emerged to better understand, replicate, and improve upon these successes through scientific research. Human Computation refers to the science that underlies online crowd-powered systems and was the topic of a recent visioning activity in which a representative cross-section of researchers, industry practitioners, visionaries, funding agency representatives, and policy makers came together to understand what makes crowd-powered systems successful. Teams of experts considered past, present, and future human computation systems to explore which kinds of crowd-powered systems have the greatest potential for societal impact and which kinds of research will best enable the efficient development of new crowd-powered systems to achieve this impact. This report summarize the products and findings of those activities as well as the unconventional process and activities employed by the workshop, which were informed by human computation research.

* 32 pages, 25 figures, Workshop report from the CRA-sponsored Human Computation Roadmap Summit: P. Michelucci, L. Shanley, J. Dickinson, and H. Hirsh, A U.S. Research Roadmap for Human Computation, Computing Community Consortium Technical Report, 2015 

  Access Paper or Ask Questions

Is Extreme Learning Machine Feasible? A Theoretical Assessment (Part II)

Jan 24, 2014
Shaobo Lin, Xia Liu, Jian Fang, Zongben Xu

An extreme learning machine (ELM) can be regarded as a two stage feed-forward neural network (FNN) learning system which randomly assigns the connections with and within hidden neurons in the first stage and tunes the connections with output neurons in the second stage. Therefore, ELM training is essentially a linear learning problem, which significantly reduces the computational burden. Numerous applications show that such a computation burden reduction does not degrade the generalization capability. It has, however, been open that whether this is true in theory. The aim of our work is to study the theoretical feasibility of ELM by analyzing the pros and cons of ELM. In the previous part on this topic, we pointed out that via appropriate selection of the activation function, ELM does not degrade the generalization capability in the expectation sense. In this paper, we launch the study in a different direction and show that the randomness of ELM also leads to certain negative consequences. On one hand, we find that the randomness causes an additional uncertainty problem of ELM, both in approximation and learning. On the other hand, we theoretically justify that there also exists an activation function such that the corresponding ELM degrades the generalization capability. In particular, we prove that the generalization capability of ELM with Gaussian kernel is essentially worse than that of FNN with Gaussian kernel. To facilitate the use of ELM, we also provide a remedy to such a degradation. We find that the well-developed coefficient regularization technique can essentially improve the generalization capability. The obtained results reveal the essential characteristic of ELM and give theoretical guidance concerning how to use ELM.

* 13 pages 

  Access Paper or Ask Questions

Category-Theoretic Quantitative Compositional Distributional Models of Natural Language Semantics

Nov 06, 2013
Edward Grefenstette

This thesis is about the problem of compositionality in distributional semantics. Distributional semantics presupposes that the meanings of words are a function of their occurrences in textual contexts. It models words as distributions over these contexts and represents them as vectors in high dimensional spaces. The problem of compositionality for such models concerns itself with how to produce representations for larger units of text by composing the representations of smaller units of text. This thesis focuses on a particular approach to this compositionality problem, namely using the categorical framework developed by Coecke, Sadrzadeh, and Clark, which combines syntactic analysis formalisms with distributional semantic representations of meaning to produce syntactically motivated composition operations. This thesis shows how this approach can be theoretically extended and practically implemented to produce concrete compositional distributional models of natural language semantics. It furthermore demonstrates that such models can perform on par with, or better than, other competing approaches in the field of natural language processing. There are three principal contributions to computational linguistics in this thesis. The first is to extend the DisCoCat framework on the syntactic front and semantic front, incorporating a number of syntactic analysis formalisms and providing learning procedures allowing for the generation of concrete compositional distributional models. The second contribution is to evaluate the models developed from the procedures presented here, showing that they outperform other compositional distributional models present in the literature. The third contribution is to show how using category theory to solve linguistic problems forms a sound basis for research, illustrated by examples of work on this topic, that also suggest directions for future research.

* DPhil Thesis, University of Oxford, Submitted and accepted in 2013 

  Access Paper or Ask Questions

Part-level Action Parsing via a Pose-guided Coarse-to-Fine Framework

Mar 09, 2022
Xiaodong Chen, Xinchen Liu, Wu Liu, Kun Liu, Dong Wu, Yongdong Zhang, Tao Mei

Action recognition from videos, i.e., classifying a video into one of the pre-defined action types, has been a popular topic in the communities of artificial intelligence, multimedia, and signal processing. However, existing methods usually consider an input video as a whole and learn models, e.g., Convolutional Neural Networks (CNNs), with coarse video-level class labels. These methods can only output an action class for the video, but cannot provide fine-grained and explainable cues to answer why the video shows a specific action. Therefore, researchers start to focus on a new task, Part-level Action Parsing (PAP), which aims to not only predict the video-level action but also recognize the frame-level fine-grained actions or interactions of body parts for each person in the video. To this end, we propose a coarse-to-fine framework for this challenging task. In particular, our framework first predicts the video-level class of the input video, then localizes the body parts and predicts the part-level action. Moreover, to balance the accuracy and computation in part-level action parsing, we propose to recognize the part-level actions by segment-level features. Furthermore, to overcome the ambiguity of body parts, we propose a pose-guided positional embedding method to accurately localize body parts. Through comprehensive experiments on a large-scale dataset, i.e., Kinetics-TPS, our framework achieves state-of-the-art performance and outperforms existing methods over a 31.10% ROC score.

* Accepted by IEEE ISCAS 2022, 5 pages, 2 figures 

  Access Paper or Ask Questions

Disentangled Spatiotemporal Graph Generative Models

Feb 28, 2022
Yuanqi Du, Xiaojie Guo, Hengning Cao, Yanfang Ye, Liang Zhao

Spatiotemporal graph represents a crucial data structure where the nodes and edges are embedded in a geometric space and can evolve dynamically over time. Nowadays, spatiotemporal graph data is becoming increasingly popular and important, ranging from microscale (e.g. protein folding), to middle-scale (e.g. dynamic functional connectivity), to macro-scale (e.g. human mobility network). Although disentangling and understanding the correlations among spatial, temporal, and graph aspects have been a long-standing key topic in network science, they typically rely on network processing hypothesized by human knowledge. This usually fit well towards the graph properties which can be predefined, but cannot do well for the most cases, especially for many key domains where the human has yet very limited knowledge such as protein folding and biological neuronal networks. In this paper, we aim at pushing forward the modeling and understanding of spatiotemporal graphs via new disentangled deep generative models. Specifically, a new Bayesian model is proposed that factorizes spatiotemporal graphs into spatial, temporal, and graph factors as well as the factors that explain the interplay among them. A variational objective function and new mutual information thresholding algorithms driven by information bottleneck theory have been proposed to maximize the disentanglement among the factors with theoretical guarantees. Qualitative and quantitative experiments on both synthetic and real-world datasets demonstrate the superiority of the proposed model over the state-of-the-arts by up to 69.2% for graph generation and 41.5% for interpretability.

* In Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI 2022) Oral Presentation 

  Access Paper or Ask Questions

Feature Selection-based Intrusion Detection System Using Genetic Whale Optimization Algorithm and Sample-based Classification

Jan 03, 2022
Amir Mojtahedi, Farid Sorouri, Alireza Najafi Souha, Aidin Molazadeh, Saeedeh Shafaei Mehr

Preventing and detecting intrusions and attacks on wireless networks has become an important and serious challenge. On the other hand, due to the limited resources of wireless nodes, the use of monitoring nodes for permanent monitoring in wireless sensor networks in order to prevent and detect intrusion and attacks in this type of network is practically non-existent. Therefore, the solution to overcome this problem today is the discussion of remote-control systems and has become one of the topics of interest in various fields. Remote monitoring of node performance and behavior in wireless sensor networks, in addition to detecting malicious nodes within the network, can also predict malicious node behavior in future. In present research, a network intrusion detection system using feature selection based on a combination of Whale optimization algorithm (WOA) and genetic algorithm (GA) and sample-based classification is proposed. In this research, the standard data set KDDCUP1999 has been used in which the characteristics related to healthy nodes and types of malicious nodes are stored based on the type of attacks in the network. The proposed method is based on the combination of feature selection based on Whale optimization algorithm and genetic algorithm with KNN classification in terms of accuracy criteria, has better results than other previous methods. Based on this, it can be said that the Whale optimization algorithm and the genetic algorithm have extracted the features related to the class label well, and the KNN method has been able to well detect the misconduct nodes in the intrusion detection data set in wireless networks.


  Access Paper or Ask Questions

<<
573
574
575
576
577
578
579
580
581
582
583
584
585
>>