Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Topic": models, code, and papers

Auto-encoder based Model for High-dimensional Imbalanced Industrial Data

Aug 05, 2021
Chao Zhang, Sthitie Bom

With the proliferation of IoT devices, the distributed control systems are now capturing and processing more sensors at higher frequency than ever before. These new data, due to their volume and novelty, cannot be effectively consumed without the help of data-driven techniques. Deep learning is emerging as a promising technique to analyze these data, particularly in soft sensor modeling. The strong representational capabilities of complex data and the flexibility it offers from an architectural perspective make it a topic of active applied research in industrial settings. However, the successful applications of deep learning in soft sensing are still not widely integrated in factory control systems, because most of the research on soft sensing do not have access to large scale industrial data which are varied, noisy and incomplete. The results published in most research papers are therefore not easily reproduced when applied to the variety of data in industrial settings. Here we provide manufacturing data sets that are much larger and more complex than public open soft sensor data. Moreover, the data sets are from Seagate factories on active service with only necessary anonymization, so that they reflect the complex and noisy nature of real-world data. We introduce a variance weighted multi-headed auto-encoder classification model that fits well into the high-dimensional and highly imbalanced data. Besides the use of weighting or sampling methods to handle the highly imbalanced data, the model also simultaneously predicts multiple outputs by exploiting output-supervised representation learning and multi-task weighting.

* 12 pages, 7 figures and 5 tables, submitted to ICONIP 2021 

  Access Paper or Ask Questions

Exploring Sequence Feature Alignment for Domain Adaptive Detection Transformers

Aug 05, 2021
Wen Wang, Yang Cao, Jing Zhang, Fengxiang He, Zheng-Jun Zha, Yonggang Wen, Dacheng Tao

Detection transformers have recently shown promising object detection results and attracted increasing attention. However, how to develop effective domain adaptation techniques to improve its cross-domain performance remains unexplored and unclear. In this paper, we delve into this topic and empirically find that direct feature distribution alignment on the CNN backbone only brings limited improvements, as it does not guarantee domain-invariant sequence features in the transformer for prediction. To address this issue, we propose a novel Sequence Feature Alignment (SFA) method that is specially designed for the adaptation of detection transformers. Technically, SFA consists of a domain query-based feature alignment (DQFA) module and a token-wise feature alignment (TDA) module. In DQFA, a novel domain query is used to aggregate and align global context from the token sequence of both domains. DQFA reduces the domain discrepancy in global feature representations and object relations when deploying in the transformer encoder and decoder, respectively. Meanwhile, TDA aligns token features in the sequence from both domains, which reduces the domain gaps in local and instance-level feature representations in the transformer encoder and decoder, respectively. Besides, a novel bipartite matching consistency loss is proposed to enhance the feature discriminability for robust object detection. Experiments on three challenging benchmarks show that SFA outperforms state-of-the-art domain adaptive object detection methods. Code has been made available at:

* Accepted by ACM MM2021. Source code is available at: Update acknowledgment 

  Access Paper or Ask Questions

COVID-19 Vaccines: Characterizing Misinformation Campaigns and Vaccine Hesitancy on Twitter

Jun 15, 2021
Karishma Sharma, Yizhou Zhang, Yan Liu

Vaccine hesitancy and misinformation on social media has increased concerns about COVID-19 vaccine uptake required to achieve herd immunity and overcome the pandemic. However anti-science and political misinformation and conspiracies have been rampant throughout the pandemic. For COVID-19 vaccines, we investigate misinformation and conspiracy campaigns and their characteristic behaviours. We identify whether coordinated efforts are used to promote misinformation in vaccine related discussions, and find accounts coordinately promoting a `Great Reset' conspiracy group promoting vaccine related misinformation and strong anti-vaccine and anti-social messages such as boycott vaccine passports, no lock-downs and masks. We characterize other misinformation communities from the information diffusion structure, and study the large anti-vaccine misinformation community and smaller anti-vaccine communities, including a far-right anti-vaccine conspiracy group. In comparison with the mainstream and health news, left-leaning group, which are more pro-vaccine, the right-leaning group is influenced more by the anti-vaccine and far-right misinformation/conspiracy communities. The misinformation communities are more vocal either specific to the vaccine discussion or political discussion, and we find other differences in the characteristic behaviours of different communities. Lastly, we investigate misinformation narratives and tactics of information distortion that can increase vaccine hesitancy, using topic modeling and comparison with reported vaccine side-effects (VAERS) finding rarer side-effects are more frequently discussed on social media.

  Access Paper or Ask Questions

EmoNet: A Transfer Learning Framework for Multi-Corpus Speech Emotion Recognition

Mar 10, 2021
Maurice Gerczuk, Shahin Amiriparian, Sandra Ottl, Björn Schuller

In this manuscript, the topic of multi-corpus Speech Emotion Recognition (SER) is approached from a deep transfer learning perspective. A large corpus of emotional speech data, EmoSet, is assembled from a number of existing SER corpora. In total, EmoSet contains 84181 audio recordings from 26 SER corpora with a total duration of over 65 hours. The corpus is then utilised to create a novel framework for multi-corpus speech emotion recognition, namely EmoNet. A combination of a deep ResNet architecture and residual adapters is transferred from the field of multi-domain visual recognition to multi-corpus SER on EmoSet. Compared against two suitable baselines and more traditional training and transfer settings for the ResNet, the residual adapter approach enables parameter efficient training of a multi-domain SER model on all 26 corpora. A shared model with only $3.5$ times the number of parameters of a model trained on a single database leads to increased performance for 21 of the 26 corpora in EmoSet. Measured by McNemar's test, these improvements are further significant for ten datasets at $p<0.05$ while there are just two corpora that see only significant decreases across the residual adapter transfer experiments. Finally, we make our EmoNet framework publicly available for users and developers at EmoNet provides an extensive command line interface which is comprehensively documented and can be used in a variety of multi-corpus transfer learning settings.

* 18 pages, 7 figures 

  Access Paper or Ask Questions

MVFNet: Multi-View Fusion Network for Efficient Video Recognition

Jan 05, 2021
Wenhao Wu, Dongliang He, Tianwei Lin, Fu Li, Chuang Gan, Errui Ding

Conventionally, spatiotemporal modeling network and its complexity are the two most concentrated research topics in video action recognition. Existing state-of-the-art methods have achieved excellent accuracy regardless of the complexity meanwhile efficient spatiotemporal modeling solutions are slightly inferior in performance. In this paper, we attempt to acquire both efficiency and effectiveness simultaneously. First of all, besides traditionally treating H x W x T video frames as space-time signal (viewing from the Height-Width spatial plane), we propose to also model video from the other two Height-Time and Width-Time planes, to capture the dynamics of video thoroughly. Secondly, our model is designed based on 2D CNN backbones and model complexity is well kept in mind by design. Specifically, we introduce a novel multi-view fusion (MVF) module to exploit video dynamics using separable convolution for efficiency. It is a plug-and-play module and can be inserted into off-the-shelf 2D CNNs to form a simple yet effective model called MVFNet. Moreover, MVFNet can be thought of as a generalized video modeling framework and it can specialize to be existing methods such as C2D, SlowOnly, and TSM under different settings. Extensive experiments are conducted on popular benchmarks (i.e., Something-Something V1 & V2, Kinetics, UCF-101, and HMDB-51) to show its superiority. The proposed MVFNet can achieve state-of-the-art performance with 2D CNN's complexity.

* Accepted by AAAI2021 

  Access Paper or Ask Questions

Discovering Multi-Hardware Mobile Models via Architecture Search

Aug 18, 2020
Grace Chu, Okan Arikan, Gabriel Bender, Weijun Wang, Achille Brighton, Pieter-Jan Kindermans, Hanxiao Liu, Berkin Akin, Suyog Gupta, Andrew Howard

Developing efficient models for mobile phones or other on-device deployments has been a popular topic in both industry and academia. In such scenarios, it is often convenient to deploy the same model on a diverse set of hardware devices owned by different end users to minimize the costs of development, deployment and maintenance. Despite the importance, designing a single neural network that can perform well on multiple devices is difficult as each device has its own specialty and restrictions: A model optimized for one device may not perform well on another. While most existing work proposes different models optimized for each single hardware, this paper is the first which explores the problem of finding a single model that performs well on multiple hardware. Specifically, we leverage architecture search to help us find the best model, where given a set of diverse hardware to optimize for, we first introduce a multi-hardware search space that is compatible with all examined hardware. Then, to measure the performance of a neural network over multiple hardware, we propose metrics that can characterize the overall latency performance in an average case and worst case scenario. With the multi-hardware search space and new metrics applied to Pixel4 CPU, GPU, DSP and EdgeTPU, we found models that perform on par or better than state-of-the-art (SOTA) models on each of our target accelerators and generalize well on many un-targeted hardware. Comparing with single-hardware searches, multi-hardware search gives a better trade-off between computation cost and model performance.

  Access Paper or Ask Questions

A Pairwise Probe for Understanding BERT Fine-Tuning on Machine Reading Comprehension

Jun 02, 2020
Jie Cai, Zhengzhou Zhu, Ping Nie, Qian Liu

Pre-trained models have brought significant improvements to many NLP tasks and have been extensively analyzed. But little is known about the effect of fine-tuning on specific tasks. Intuitively, people may agree that a pre-trained model already learns semantic representations of words (e.g. synonyms are closer to each other) and fine-tuning further improves its capabilities which require more complicated reasoning (e.g. coreference resolution, entity boundary detection, etc). However, how to verify these arguments analytically and quantitatively is a challenging task and there are few works focus on this topic. In this paper, inspired by the observation that most probing tasks involve identifying matched pairs of phrases (e.g. coreference requires matching an entity and a pronoun), we propose a pairwise probe to understand BERT fine-tuning on the machine reading comprehension (MRC) task. Specifically, we identify five phenomena in MRC. According to pairwise probing tasks, we compare the performance of each layer's hidden representation of pre-trained and fine-tuned BERT. The proposed pairwise probe alleviates the problem of distraction from inaccurate model training and makes a robust and quantitative comparison. Our experimental analysis leads to highly confident conclusions: (1) Fine-tuning has little effect on the fundamental and low-level information and general semantic tasks. (2) For specific abilities required for downstream tasks, fine-tuned BERT is better than pre-trained BERT and such gaps are obvious after the fifth layer.

* e.g.: 4 pages, 1 figure 

  Access Paper or Ask Questions