Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Topic": models, code, and papers

Fully Convolutional Network for Melanoma Diagnostics

Jun 12, 2018
Adon Phillips, Iris Teo, Jochen Lang

This work seeks to determine how modern machine learning techniques may be applied to the previously unexplored topic of melanoma diagnostics using digital pathology. We curated a new dataset of 50 patient cases of cutaneous melanoma using digital pathology. We provide gold standard annotations for three tissue types (tumour, epidermis, and dermis) which are important for the prognostic measurements known as Breslow thickness and Clark level. Then, we devised a novel multi-stride fully convolutional network (FCN) architecture that outperformed other networks trained and evaluated using the same data according to standard metrics. Finally, we trained a model to detect and localize the target tissue types. When processing previously unseen cases, our model's output is qualitatively very similar to the gold standard. In addition to the standard metrics computed as a baseline for our approach, we asked three additional pathologists to measure the Breslow thickness on the network's output. Their responses were diagnostically equivalent to the ground truth measurements, and when removing cases where a measurement was not appropriate, inter-rater reliability (IRR) between the four pathologists was 75.0%. Given the qualitative and quantitative results, it is possible to overcome the discriminative challenges of the skin and tumour anatomy for segmentation using modern machine learning techniques, though more work is required to improve the network's performance on dermis segmentation. Further, we show that it is possible to achieve a level of accuracy required to manually perform the Breslow thickness measurement.

  Access Paper or Ask Questions

Corpus specificity in LSA and Word2vec: the role of out-of-domain documents

Dec 28, 2017
Edgar Altszyler, Mariano Sigman, Diego Fernandez Slezak

Latent Semantic Analysis (LSA) and Word2vec are some of the most widely used word embeddings. Despite the popularity of these techniques, the precise mechanisms by which they acquire new semantic relations between words remain unclear. In the present article we investigate whether LSA and Word2vec capacity to identify relevant semantic dimensions increases with size of corpus. One intuitive hypothesis is that the capacity to identify relevant dimensions should increase as the amount of data increases. However, if corpus size grow in topics which are not specific to the domain of interest, signal to noise ratio may weaken. Here we set to examine and distinguish these alternative hypothesis. To investigate the effect of corpus specificity and size in word-embeddings we study two ways for progressive elimination of documents: the elimination of random documents vs. the elimination of documents unrelated to a specific task. We show that Word2vec can take advantage of all the documents, obtaining its best performance when it is trained with the whole corpus. On the contrary, the specialization (removal of out-of-domain documents) of the training corpus, accompanied by a decrease of dimensionality, can increase LSA word-representation quality while speeding up the processing time. Furthermore, we show that the specialization without the decrease in LSA dimensionality can produce a strong performance reduction in specific tasks. From a cognitive-modeling point of view, we point out that LSA's word-knowledge acquisitions may not be efficiently exploiting higher-order co-occurrences and global relations, whereas Word2vec does.

* Proceedings of the 3rd Workshop on Representation Learning for NLP, pages 1-10, 2018, ACL 

  Access Paper or Ask Questions

Learning in Implicit Generative Models

Feb 27, 2017
Shakir Mohamed, Balaji Lakshminarayanan

Generative adversarial networks (GANs) provide an algorithmic framework for constructing generative models with several appealing properties: they do not require a likelihood function to be specified, only a generating procedure; they provide samples that are sharp and compelling; and they allow us to harness our knowledge of building highly accurate neural network classifiers. Here, we develop our understanding of GANs with the aim of forming a rich view of this growing area of machine learning---to build connections to the diverse set of statistical thinking on this topic, of which much can be gained by a mutual exchange of ideas. We frame GANs within the wider landscape of algorithms for learning in implicit generative models--models that only specify a stochastic procedure with which to generate data--and relate these ideas to modelling problems in related fields, such as econometrics and approximate Bayesian computation. We develop likelihood-free inference methods and highlight hypothesis testing as a principle for learning in implicit generative models, using which we are able to derive the objective function used by GANs, and many other related objectives. The testing viewpoint directs our focus to the general problem of density ratio estimation. There are four approaches for density ratio estimation, one of which is a solution using classifiers to distinguish real from generated data. Other approaches such as divergence minimisation and moment matching have also been explored in the GAN literature, and we synthesise these views to form an understanding in terms of the relationships between them and the wider literature, highlighting avenues for future exploration and cross-pollination.

  Access Paper or Ask Questions

Deep Feature Fusion Network for Answer Quality Prediction in Community Question Answering

Jun 26, 2016
Sai Praneeth Suggu, Kushwanth N. Goutham, Manoj K. Chinnakotla, Manish Shrivastava

Community Question Answering (cQA) forums have become a popular medium for soliciting direct answers to specific questions of users from experts or other experienced users on a given topic. However, for a given question, users sometimes have to sift through a large number of low-quality or irrelevant answers to find out the answer which satisfies their information need. To alleviate this, the problem of Answer Quality Prediction (AQP) aims to predict the quality of an answer posted in response to a forum question. Current AQP systems either learn models using - a) various hand-crafted features (HCF) or b) use deep learning (DL) techniques which automatically learn the required feature representations. In this paper, we propose a novel approach for AQP known as - "Deep Feature Fusion Network (DFFN)" which leverages the advantages of both hand-crafted features and deep learning based systems. Given a question-answer pair along with its metadata, DFFN independently - a) learns deep features using a Convolutional Neural Network (CNN) and b) computes hand-crafted features using various external resources and then combines them using a deep neural network trained to predict the final answer quality. DFFN achieves state-of-the-art performance on the standard SemEval-2015 and SemEval-2016 benchmark datasets and outperforms baseline approaches which individually employ either HCF or DL based techniques alone.

* Neu-IR '16 SIGIR Workshop on Neural Information Retrieval, July 21, 2016, Pisa, Italy 

  Access Paper or Ask Questions

Robust Image Sentiment Analysis Using Progressively Trained and Domain Transferred Deep Networks

Sep 20, 2015
Quanzeng You, Jiebo Luo, Hailin Jin, Jianchao Yang

Sentiment analysis of online user generated content is important for many social media analytics tasks. Researchers have largely relied on textual sentiment analysis to develop systems to predict political elections, measure economic indicators, and so on. Recently, social media users are increasingly using images and videos to express their opinions and share their experiences. Sentiment analysis of such large scale visual content can help better extract user sentiments toward events or topics, such as those in image tweets, so that prediction of sentiment from visual content is complementary to textual sentiment analysis. Motivated by the needs in leveraging large scale yet noisy training data to solve the extremely challenging problem of image sentiment analysis, we employ Convolutional Neural Networks (CNN). We first design a suitable CNN architecture for image sentiment analysis. We obtain half a million training samples by using a baseline sentiment algorithm to label Flickr images. To make use of such noisy machine labeled data, we employ a progressive strategy to fine-tune the deep network. Furthermore, we improve the performance on Twitter images by inducing domain transfer with a small number of manually labeled Twitter images. We have conducted extensive experiments on manually labeled Twitter images. The results show that the proposed CNN can achieve better performance in image sentiment analysis than competing algorithms.

* 9 pages, 5 figures, AAAI 2015 

  Access Paper or Ask Questions

Prioritized Variable-length Test Cases Generation for Finite State Machines

Apr 03, 2022
Vaclav Rechtberger, Miroslav Bures, Bestoun S. Ahmed, Youcef Belkhier, Jiri Nema, Hynek Schvach

Model-based Testing (MBT) is an effective approach for testing when parts of a system-under-test have the characteristics of a finite state machine (FSM). Despite various strategies in the literature on this topic, little work exists to handle special testing situations. More specifically, when concurrently: (1) the test paths can start and end only in defined states of the FSM, (2) a prioritization mechanism that requires only defined states and transitions of the FSM to be visited by test cases is required, and (3) the test paths must be in a given length range, not necessarily of explicit uniform length. This paper presents a test generation strategy that satisfies all these requirements. A concurrent combination of these requirements is highly practical for real industrial testing. Six variants of possible algorithms to implement this strategy are described. Using a mixture of 180 problem instances from real automotive and defense projects and artificially generated FSMs, all variants are compared with a baseline strategy based on an established N-switch coverage concept modification. Various properties of the generated test paths and their potential to activate fictional defects defined in FSMs are evaluated. The presented strategy outperforms the baseline in most problem configurations. Out of the six analyzed variants, three give the best results even though a universal best performer is hard to identify. Depending on the application of the FSM, the strategy and evaluation presented in this paper are applicable both in testing functional and non-functional software requirements.

* Paper accepted at the ITEQS workshop of the 15th IEEE International Conference on Software Testing, Verification and Validation (ICST) 2022 conference, April 4 - 13, 2022, New version - correction of typo in captions of Table III 

  Access Paper or Ask Questions

A Comparative Study on Speaker-attributed Automatic Speech Recognition in Multi-party Meetings

Apr 01, 2022
Fan Yu, Zhihao Du, Shiliang Zhang, Yuxiao Lin, Lei Xie

In this paper, we conduct a comparative study on speaker-attributed automatic speech recognition (SA-ASR) in the multi-party meeting scenario, a topic with increasing attention in meeting rich transcription. Specifically, three approaches are evaluated in this study. The first approach, FD-SOT, consists of a frame-level diarization model to identify speakers and a multi-talker ASR to recognize utterances. The speaker-attributed transcriptions are obtained by aligning the diarization results and recognized hypotheses. However, such an alignment strategy may suffer from erroneous timestamps due to the modular independence, severely hindering the model performance. Therefore, we propose the second approach, WD-SOT, to address alignment errors by introducing a word-level diarization model, which can get rid of such timestamp alignment dependency. To further mitigate the alignment issues, we propose the third approach, TS-ASR, which trains a target-speaker separation module and an ASR module jointly. By comparing various strategies for each SA-ASR approach, experimental results on a real meeting scenario corpus, AliMeeting, reveal that the WD-SOT approach achieves 10.7% relative reduction on averaged speaker-dependent character error rate (SD-CER), compared with the FD-SOT approach. In addition, the TS-ASR approach also outperforms the FD-SOT approach and brings 16.5% relative average SD-CER reduction.

* Submitted to INTERSPEECH 2022, 5 pages, 2 figures (add a figure to explain the world-level diarization method) 

  Access Paper or Ask Questions

Towards Disturbance-Free Visual Mobile Manipulation

Dec 17, 2021
Tianwei Ni, Kiana Ehsani, Luca Weihs, Jordi Salvador

Embodied AI has shown promising results on an abundance of robotic tasks in simulation, including visual navigation and manipulation. The prior work generally pursues high success rates with shortest paths while largely ignoring the problems caused by collision during interaction. This lack of prioritization is understandable: in simulated environments there is no inherent cost to breaking virtual objects. As a result, well-trained agents frequently have catastrophic collision with objects despite final success. In the robotics community, where the cost of collision is large, collision avoidance is a long-standing and crucial topic to ensure that robots can be safely deployed in the real world. In this work, we take the first step towards collision/disturbance-free embodied AI agents for visual mobile manipulation, facilitating safe deployment in real robots. We develop a new disturbance-avoidance methodology at the heart of which is the auxiliary task of disturbance prediction. When combined with a disturbance penalty, our auxiliary task greatly enhances sample efficiency and final performance by knowledge distillation of disturbance into the agent. Our experiments on ManipulaTHOR show that, on testing scenes with novel objects, our method improves the success rate from 61.7% to 85.6% and the success rate without disturbance from 29.8% to 50.2% over the original baseline. Extensive ablation studies show the value of our pipelined approach. Project site is at

  Access Paper or Ask Questions

Human Languages with Greater Information Density Increase Communication Speed, but Decrease Conversation Breadth

Dec 15, 2021
Pedro Aceves, James A. Evans

Language is the primary medium through which human information is communicated and coordination is achieved. One of the most important language functions is to categorize the world so messages can be communicated through conversation. While we know a great deal about how human languages vary in their encoding of information within semantic domains such as color, sound, number, locomotion, time, space, human activities, gender, body parts and biology, little is known about the global structure of semantic information and its effect on human communication. Using large-scale computation, artificial intelligence techniques, and massive, parallel corpora across 15 subject areas--including religion, economics, medicine, entertainment, politics, and technology--in 999 languages, here we show substantial variation in the information and semantic density of languages and their consequences for human communication and coordination. In contrast to prior work, we demonstrate that higher density languages communicate information much more quickly relative to lower density languages. Then, using over 9,000 real-life conversations across 14 languages and 90,000 Wikipedia articles across 140 languages, we show that because there are more ways to discuss any given topic in denser languages, conversations and articles retrace and cycle over a narrower conceptual terrain. These results demonstrate an important source of variation across the human communicative channel, suggesting that the structure of language shapes the nature and texture of conversation, with important consequences for the behavior of groups, organizations, markets, and societies.

  Access Paper or Ask Questions

OstrichRL: A Musculoskeletal Ostrich Simulation to Study Bio-mechanical Locomotion

Dec 11, 2021
Vittorio La Barbera, Fabio Pardo, Yuval Tassa, Monica Daley, Christopher Richards, Petar Kormushev, John Hutchinson

Muscle-actuated control is a research topic of interest spanning different fields, in particular biomechanics, robotics and graphics. This type of control is particularly challenging because models are often overactuated, and dynamics are delayed and non-linear. It is however a very well tested and tuned actuation model that has undergone millions of years of evolution and that involves interesting properties exploiting passive forces of muscle-tendon units and efficient energy storage and release. To facilitate research on muscle-actuated simulation, we release a 3D musculoskeletal simulation of an ostrich based on the MuJoCo simulator. Ostriches are one of the fastest bipeds on earth and are therefore an excellent model for studying muscle-actuated bipedal locomotion. The model is based on CT scans and dissections used to gather actual muscle data such as insertion sites, lengths and pennation angles. Along with this model, we also provide a set of reinforcement learning tasks, including reference motion tracking and a reaching task with the neck. The reference motion data are based on motion capture clips of various behaviors which we pre-processed and adapted to our model. This paper describes how the model was built and iteratively improved using the tasks. We evaluate the accuracy of the muscle actuation patterns by comparing them to experimentally collected electromyographic data from locomoting birds. We believe that this work can be a useful bridge between the biomechanics, reinforcement learning, graphics and robotics communities, by providing a fast and easy to use simulation.


  Access Paper or Ask Questions