Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Topic": models, code, and papers

WenetSpeech: A 10000+ Hours Multi-domain Mandarin Corpus for Speech Recognition

Oct 12, 2021
Binbin Zhang, Hang Lv, Pengcheng Guo, Qijie Shao, Chao Yang, Lei Xie, Xin Xu, Hui Bu, Xiaoyu Chen, Chenchen Zeng, Di Wu, Zhendong Peng

In this paper, we present WenetSpeech, a multi-domain Mandarin corpus consisting of 10000+ hours high-quality labeled speech, 2400+ hours weakly labeled speech, and about 10000 hours unlabeled speech, with 22400+ hours in total. We collect the data from YouTube and Podcast, which covers a variety of speaking styles, scenarios, domains, topics, and noisy conditions. An optical character recognition (OCR) based method is introduced to generate the audio/text segmentation candidates for the YouTube data on its corresponding video captions, while a high-quality ASR transcription system is used to generate audio/text pair candidates for the Podcast data. Then we propose a novel end-to-end label error detection approach to further validate and filter the candidates. We also provide three manually labelled high-quality test sets along with WenetSpeech for evaluation -- Dev for cross-validation purpose in training, Test_Net, collected from Internet for matched test, and Test\_Meeting, recorded from real meetings for more challenging mismatched test. Baseline systems trained with WenetSpeech are provided for three popular speech recognition toolkits, namely Kaldi, ESPnet, and WeNet, and recognition results on the three test sets are also provided as benchmarks. To the best of our knowledge, WenetSpeech is the current largest open-sourced Mandarin speech corpus with transcriptions, which benefits research on production-level speech recognition.

  Access Paper or Ask Questions

Multi-modal Self-supervised Pre-training for Regulatory Genome Across Cell Types

Oct 11, 2021
Shentong Mo, Xi Fu, Chenyang Hong, Yizhen Chen, Yuxuan Zheng, Xiangru Tang, Zhiqiang Shen, Eric P Xing, Yanyan Lan

In the genome biology research, regulatory genome modeling is an important topic for many regulatory downstream tasks, such as promoter classification, transaction factor binding sites prediction. The core problem is to model how regulatory elements interact with each other and its variability across different cell types. However, current deep learning methods often focus on modeling genome sequences of a fixed set of cell types and do not account for the interaction between multiple regulatory elements, making them only perform well on the cell types in the training set and lack the generalizability required in biological applications. In this work, we propose a simple yet effective approach for pre-training genome data in a multi-modal and self-supervised manner, which we call GeneBERT. Specifically, we simultaneously take the 1d sequence of genome data and a 2d matrix of (transcription factors x regions) as the input, where three pre-training tasks are proposed to improve the robustness and generalizability of our model. We pre-train our model on the ATAC-seq dataset with 17 million genome sequences. We evaluate our GeneBERT on regulatory downstream tasks across different cell types, including promoter classification, transaction factor binding sites prediction, disease risk estimation, and splicing sites prediction. Extensive experiments demonstrate the effectiveness of multi-modal and self-supervised pre-training for large-scale regulatory genomics data.

  Access Paper or Ask Questions

Survey and synthesis of state of the art in driver monitoring

Oct 01, 2021
Anaïs Halin, Jacques G. Verly, Marc Van Droogenbroeck

Road-vehicle accidents are mostly due to human errors, and many such accidents could be avoided by continuously monitoring the driver. Driver monitoring (DM) is a topic of growing interest in the automotive industry, and it will remain relevant for all vehicles that are not fully autonomous, and thus for decades for the average vehicle owner. The present paper focuses on the first step of DM, which consists in characterizing the state of the driver. Since DM will be increasingly linked to driving automation (DA), this paper presents a clear view of the role of DM at each of the six SAE levels of DA. This paper surveys the state of the art of DM, and then synthesizes it, providing a unique, structured, polychotomous view of the many characterization techniques of DM. Informed by the survey, the paper characterizes the driver state along the five main dimensions--called here "(sub)states"--of drowsiness, mental workload, distraction, emotions, and under the influence. The polychotomous view of DM is presented through a pair of interlocked tables that relate these states to their indicators (e.g., the eye-blink rate) and the sensors that can access each of these indicators (e.g., a camera). The tables factor in not only the effects linked directly to the driver, but also those linked to the (driven) vehicle and the (driving) environment. They show, at a glance, to concerned researchers, equipment providers, and vehicle manufacturers (1) most of the options they have to implement various forms of advanced DM systems, and (2) fruitful areas for further research and innovation.

* Sensors 2021, 21(16):5558 

  Access Paper or Ask Questions

Dynamic Language Models for Continuously Evolving Content

Jun 11, 2021
Spurthi Amba Hombaiah, Tao Chen, Mingyang Zhang, Michael Bendersky, Marc Najork

The content on the web is in a constant state of flux. New entities, issues, and ideas continuously emerge, while the semantics of the existing conversation topics gradually shift. In recent years, pre-trained language models like BERT greatly improved the state-of-the-art for a large spectrum of content understanding tasks. Therefore, in this paper, we aim to study how these language models can be adapted to better handle continuously evolving web content. In our study, we first analyze the evolution of 2013 - 2019 Twitter data, and unequivocally confirm that a BERT model trained on past tweets would heavily deteriorate when directly applied to data from later years. Then, we investigate two possible sources of the deterioration: the semantic shift of existing tokens and the sub-optimal or failed understanding of new tokens. To this end, we both explore two different vocabulary composition methods, as well as propose three sampling methods which help in efficient incremental training for BERT-like models. Compared to a new model trained from scratch offline, our incremental training (a) reduces the training costs, (b) achieves better performance on evolving content, and (c) is suitable for online deployment. The superiority of our methods is validated using two downstream tasks. We demonstrate significant improvements when incrementally evolving the model from a particular base year, on the task of Country Hashtag Prediction, as well as on the OffensEval 2019 task.

* KDD 2021 

  Access Paper or Ask Questions

More Is Better: An Analysis of Instance Quantity/Quality Trade-off in Rehearsal-based Continual Learning

Jun 04, 2021
Francesco Pelosin, Andrea Torsello

The design of machines and algorithms capable of learning in a dynamically changing environment has become an increasingly topical problem with the increase of the size and heterogeneity of data available to learning systems. As a consequence, the key issue of Continual Learning has become that of addressing the stability-plasticity dilemma of connectionist systems, as they need to adapt their model without forgetting previously acquired knowledge. Within this context, rehearsal-based methods i.e., solutions in where the learner exploits memory to revisit past data, has proven to be very effective, leading to performance at the state-of-the-art. In our study, we propose an analysis of the memory quantity/quality trade-off adopting various data reduction approaches to increase the number of instances storable in memory. In particular, we investigate complex instance compression techniques such as deep encoders, but also trivial approaches such as image resizing and linear dimensionality reduction. Our findings suggest that the optimal trade-off is severely skewed toward instance quantity, where rehearsal approaches with several heavily compressed instances easily outperform state-of-the-art approaches with the same amount of memory at their disposal. Further, in high memory configurations, deep approaches extracting spatial structure combined with extreme resizing (of the order of $8\times8$ images) yield the best results, while in memory-constrained configurations where deep approaches cannot be used due to their memory requirement in training, Extreme Learning Machines (ELM) offer a clear advantage.

  Access Paper or Ask Questions

Music Harmony Generation, through Deep Learning and Using a Multi-Objective Evolutionary Algorithm

Feb 16, 2021
Maryam Majidi, Rahil Mahdian Toroghi

Automatic music generation has become an epicenter research topic for many scientists in artificial intelligence, who are also interested in the music industry. Being a balanced combination of math and art, music in collaboration with A.I. can simplify the generation process for new musical pieces, and ease the interpretation of it to a tangible level. On the other hand, the artistic nature of music and its mingling with the senses and feelings of the composer makes the artificial generation and mathematical modeling of it infeasible. In fact, there are no clear evaluation measures that can combine the objective music grammar and structure with the subjective audience satisfaction goal. Also, original music contains different elements that it is inevitable to put together. Therefore, in this paper, a method based on a genetic multi-objective evolutionary optimization algorithm for the generation of polyphonic music (melody with rhythm and harmony or appropriate chords) is introduced in which three specific goals determine the qualifications of the music generated. One of the goals is the rules and regulations of music, which, along with the other two goals, including the scores of music experts and ordinary listeners, fits the cycle of evolution to get the most optimal response. The scoring of experts and listeners separately is modeled using a Bi-LSTM neural network and has been incorporated in the fitness function of the algorithm. The results show that the proposed method is able to generate difficult and pleasant pieces with desired styles and lengths, along with harmonic sounds that follow the grammar while attracting the listener, at the same time.

* 14 pages, 8 figures, 1 table 

  Access Paper or Ask Questions

The VIP Gallery for Video Processing Education

Dec 29, 2020
Todd Goodall, Alan C. Bovik

Digital video pervades daily life. Mobile video, digital TV, and digital cinema are now ubiquitous, and as such, the field of Digital Video Processing (DVP) has experienced tremendous growth. Digital video systems also permeate scientific and engineering disciplines including but not limited to astronomy, communications, surveillance, entertainment, video coding, computer vision, and vision research. As a consequence, educational tools for DVP must cater to a large and diverse base of students. Towards enhancing DVP education we have created a carefully constructed gallery of educational tools that is designed to complement a comprehensive corpus of online lectures by providing examples of DVP on real-world content, along with a user-friendly interface that organizes numerous key DVP topics ranging from analog video, to human visual processing, to modern video codecs, etc. This demonstration gallery is currently being used effectively in the graduate class ``Digital Video'' at the University of Texas at Austin. Students receive enhanced access to concepts through both learning theory from highly visual lectures and watching concrete examples from the gallery, which captures the beauty of the underlying principles of modern video processing. To better understand the educational value of these tools, we conducted a pair of questionaire-based surveys to assess student background, expectations, and outcomes. The survey results support the teaching efficacy of this new didactic video toolset.

* 6 pages, 11 figures 

  Access Paper or Ask Questions

3D Point-to-Keypoint Voting Network for 6D Pose Estimation

Dec 22, 2020
Weitong Hua, Jiaxin Guo, Yue Wang, Rong Xiong

Object 6D pose estimation is an important research topic in the field of computer vision due to its wide application requirements and the challenges brought by complexity and changes in the real-world. We think fully exploring the characteristics of spatial relationship between points will help to improve the pose estimation performance, especially in the scenes of background clutter and partial occlusion. But this information was usually ignored in previous work using RGB image or RGB-D data. In this paper, we propose a framework for 6D pose estimation from RGB-D data based on spatial structure characteristics of 3D keypoints. We adopt point-wise dense feature embedding to vote for 3D keypoints, which makes full use of the structure information of the rigid body. After the direction vectors pointing to the keypoints are predicted by CNN, we use RANSAC voting to calculate the coordinate of the 3D keypoints, then the pose transformation can be easily obtained by the least square method. In addition, a spatial dimension sampling strategy for points is employed, which makes the method achieve excellent performance on small training sets. The proposed method is verified on two benchmark datasets, LINEMOD and OCCLUSION LINEMOD. The experimental results show that our method outperforms the state-of-the-art approaches, achieves ADD(-S) accuracy of 98.7\% on LINEMOD dataset and 52.6\% on OCCLUSION LINEMOD dataset in real-time.

  Access Paper or Ask Questions

Multiscale Attention Guided Network for COVID-19 Detection Using Chest X-ray Images

Nov 11, 2020
Jingxiong Li, Yaqi Wang, Shuai Wang, Jun Wang, Jun Liu, Qun Jin, Lingling Sun

Coronavirus disease 2019 (COVID-19) is one of the most destructive pandemic after millennium, forcing the world to tackle a health crisis. Automated classification of lung infections from chest X-ray (CXR) images strengthened traditional healthcare strategy to handle COVID-19. However, classifying COVID-19 from pneumonia cases using CXR image is challenging because of shared spatial characteristics, high feature variation in infections and contrast diversity between cases. Moreover, massive data collection is impractical for a newly emerged disease, which limited the performance of common deep learning models. To address this challenging topic, Multiscale Attention Guided deep network with Soft Distance regularization (MAG-SD) is proposed to automatically classify COVID-19 from pneumonia CXR images. In MAG-SD, MA-Net is used to produce prediction vector and attention map from multiscale feature maps. To relieve the shortage of training data, attention guided augmentations along with a soft distance regularization are posed, which requires a few labeled data to generate meaningful augmentations and reduce noise. Our multiscale attention model achieves better classification performance on our pneumonia CXR image dataset. Plentiful experiments are proposed for MAG-SD which demonstrates that it has its unique advantage in pneumonia classification over cuttingedge models. The code is available at JasonLeeGHub/MAG-SD.

  Access Paper or Ask Questions