Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Topic": models, code, and papers

DynGraph2Seq: Dynamic-Graph-to-Sequence Interpretable Learning for Health Stage Prediction in Online Health Forums

Aug 22, 2019
Yuyang Gao, Lingfei Wu, Houman Homayoun, Liang Zhao

Online health communities such as the online breast cancer forum enable patients (i.e., users) to interact and help each other within various subforums, which are subsections of the main forum devoted to specific health topics. The changing nature of the users' activities in different subforums can be strong indicators of their health status changes. This additional information could allow health-care organizations to respond promptly and provide additional help for the patient. However, modeling complex transitions of an individual user's activities among different subforums over time and learning how these correspond to his/her health stage are extremely challenging. In this paper, we first formulate the transition of user activities as a dynamic graph with multi-attributed nodes, then formalize the health stage inference task as a dynamic graph-to-sequence learning problem, and hence propose a novel dynamic graph-to-sequence neural networks architecture (DynGraph2Seq) to address all the challenges. Our proposed DynGraph2Seq model consists of a novel dynamic graph encoder and an interpretable sequence decoder that learn the mapping between a sequence of time-evolving user activity graphs and a sequence of target health stages. We go on to propose dynamic graph hierarchical attention mechanisms to facilitate the necessary multi-level interpretability. A comprehensive experimental analysis of its use for a health stage prediction task demonstrates both the effectiveness and the interpretability of the proposed models.

* 6 pages. Accepted as ICDM 2019 Short Paper. Final Version 

  Access Paper or Ask Questions

Mitigating the Hubness Problem for Zero-Shot Learning of 3D Objects

Jul 15, 2019
Ali Cheraghian, Shafin Rahman, Dylan Campbell, Lars Petersson

The development of advanced 3D sensors has enabled many objects to be captured in the wild at a large scale, and a 3D object recognition system may therefore encounter many objects for which the system has received no training. Zero-Shot Learning (ZSL) approaches can assist such systems in recognizing previously unseen objects. Applying ZSL to 3D point cloud objects is an emerging topic in the area of 3D vision, however, a significant problem that ZSL often suffers from is the so-called hubness problem, which is when a model is biased to predict only a few particular labels for most of the test instances. We observe that this hubness problem is even more severe for 3D recognition than for 2D recognition. One reason for this is that in 2D one can use pre-trained networks trained on large datasets like ImageNet, which produces high-quality features. However, in the 3D case there are no such large-scale, labelled datasets available for pre-training which means that the extracted 3D features are of poorer quality which, in turn, exacerbates the hubness problem. In this paper, we therefore propose a loss to specifically address the hubness problem. Our proposed method is effective for both Zero-Shot and Generalized Zero-Shot Learning, and we perform extensive evaluations on the challenging datasets ModelNet40, ModelNet10, McGill and SHREC2015. A new state-of-the-art result for both zero-shot tasks in the 3D case is established.

* BMVC 2019 

  Access Paper or Ask Questions

PnP-AdaNet: Plug-and-Play Adversarial Domain Adaptation Network with a Benchmark at Cross-modality Cardiac Segmentation

Dec 19, 2018
Qi Dou, Cheng Ouyang, Cheng Chen, Hao Chen, Ben Glocker, Xiahai Zhuang, Pheng-Ann Heng

Deep convolutional networks have demonstrated the state-of-the-art performance on various medical image computing tasks. Leveraging images from different modalities for the same analysis task holds clinical benefits. However, the generalization capability of deep models on test data with different distributions remain as a major challenge. In this paper, we propose the PnPAdaNet (plug-and-play adversarial domain adaptation network) for adapting segmentation networks between different modalities of medical images, e.g., MRI and CT. We propose to tackle the significant domain shift by aligning the feature spaces of source and target domains in an unsupervised manner. Specifically, a domain adaptation module flexibly replaces the early encoder layers of the source network, and the higher layers are shared between domains. With adversarial learning, we build two discriminators whose inputs are respectively multi-level features and predicted segmentation masks. We have validated our domain adaptation method on cardiac structure segmentation in unpaired MRI and CT. The experimental results with comprehensive ablation studies demonstrate the excellent efficacy of our proposed PnP-AdaNet. Moreover, we introduce a novel benchmark on the cardiac dataset for the task of unsupervised cross-modality domain adaptation. We will make our code and database publicly available, aiming to promote future studies on this challenging yet important research topic in medical imaging.

  Access Paper or Ask Questions

AutoSense Model for Word Sense Induction

Nov 22, 2018
Reinald Kim Amplayo, Seung-won Hwang, Min Song

Word sense induction (WSI), or the task of automatically discovering multiple senses or meanings of a word, has three main challenges: domain adaptability, novel sense detection, and sense granularity flexibility. While current latent variable models are known to solve the first two challenges, they are not flexible to different word sense granularities, which differ very much among words, from aardvark with one sense, to play with over 50 senses. Current models either require hyperparameter tuning or nonparametric induction of the number of senses, which we find both to be ineffective. Thus, we aim to eliminate these requirements and solve the sense granularity problem by proposing AutoSense, a latent variable model based on two observations: (1) senses are represented as a distribution over topics, and (2) senses generate pairings between the target word and its neighboring word. These observations alleviate the problem by (a) throwing garbage senses and (b) additionally inducing fine-grained word senses. Results show great improvements over the state-of-the-art models on popular WSI datasets. We also show that AutoSense is able to learn the appropriate sense granularity of a word. Finally, we apply AutoSense to the unsupervised author name disambiguation task where the sense granularity problem is more evident and show that AutoSense is evidently better than competing models. We share our data and code here:

* AAAI 2019 

  Access Paper or Ask Questions

LRW-1000: A Naturally-Distributed Large-Scale Benchmark for Lip Reading in the Wild

Oct 29, 2018
Shuang Yang, Yuanhang Zhang, Dalu Feng, Mingmin Yang, Chenhao Wang, Jingyun Xiao, Keyu Long, Shiguang Shan, Xilin Chen

Large-scale datasets have successively proven their fundamental importance in several research fields, especially for early progress in some emerging topics. In this paper, we focus on the problem of visual speech recognition, also known as lipreading, which has received an increasing interest in recent years. We present a naturally-distributed large-scale benchmark for lip reading in the wild, named LRW-1000, which contains 1000 classes with about 745,187 samples from more than 2000 individual speakers. Each class corresponds to the syllables of a Mandarin word which is composed of one or several Chinese characters. To the best of our knowledge, it is the largest word-level lipreading dataset and also the only public large-scale Mandarin lipreading dataset. This dataset aims at covering a "natural" variability over different speech modes and imaging conditions to incorporate challenges encountered in practical applications. This benchmark shows a large variation over several aspects, including the number of samples in each class, resolution of videos, lighting conditions, and speakers' attributes such as pose, age, gender, and make-up. Besides a detailed description of the dataset and its collection pipeline, we evaluate the popular lipreading methods and perform a thorough analysis of the results from several aspects. The results demonstrate the consistency and challenges of our dataset, which may open up some new promising directions for future work. The dataset and corresponding codes will be public for academic research use.

  Access Paper or Ask Questions

Long Activity Video Understanding using Functional Object-Oriented Network

Jul 03, 2018
Ahmad Babaeian Jelodar, David Paulius, Yu Sun

Video understanding is one of the most challenging topics in computer vision. In this paper, a four-stage video understanding pipeline is presented to simultaneously recognize all atomic actions and the single on-going activity in a video. This pipeline uses objects and motions from the video and a graph-based knowledge representation network as prior reference. Two deep networks are trained to identify objects and motions in each video sequence associated with an action. Low Level image features are then used to identify objects of interest in that video sequence. Confidence scores are assigned to objects of interest based on their involvement in the action and to motion classes based on results from a deep neural network that classifies the on-going action in video into motion classes. Confidence scores are computed for each candidate functional unit associated with an action using a knowledge representation network, object confidences, and motion confidences. Each action is therefore associated with a functional unit and the sequence of actions is further evaluated to identify the single on-going activity in the video. The knowledge representation used in the pipeline is called the functional object-oriented network which is a graph-based network useful for encoding knowledge about manipulation tasks. Experiments are performed on a dataset of cooking videos to test the proposed algorithm with action inference and activity classification. Experiments show that using functional object oriented network improves video understanding significantly.

* 12 pages, 12 figures 

  Access Paper or Ask Questions

Complexity Theory for Discrete Black-Box Optimization Heuristics

Jun 11, 2018
Carola Doerr

A predominant topic in the theory of evolutionary algorithms and, more generally, theory of randomized black-box optimization techniques is running time analysis. Running time analysis aims at understanding the performance of a given heuristic on a given problem by bounding the number of function evaluations that are needed by the heuristic to identify a solution of a desired quality. As in general algorithms theory, this running time perspective is most useful when it is complemented by a meaningful complexity theory that studies the limits of algorithmic solutions. In the context of discrete black-box optimization, several black-box complexity models have been developed to analyze the best possible performance that a black-box optimization algorithm can achieve on a given problem. The models differ in the classes of algorithms to which these lower bounds apply. This way, black-box complexity contributes to a better understanding of how certain algorithmic choices (such as the amount of memory used by a heuristic, its selective pressure, or properties of the strategies that it uses to create new solution candidates) influences performance. In this chapter we review the different black-box complexity models that have been proposed in the literature, survey the bounds that have been obtained for these models, and discuss how the interplay of running time analysis and black-box complexity can inspire new algorithmic solutions to well-researched problems in evolutionary computation. We also discuss in this chapter several interesting open questions for future work.

* This survey article is to appear (in a slightly modified form) in the book "Theory of Randomized Search Heuristics in Discrete Search Spaces", which will be published by Springer in 2018. The book is edited by Benjamin Doerr and Frank Neumann. Missing numbers of pointers to other chapters of this book will be added as soon as possible 

  Access Paper or Ask Questions

Using Titles vs. Full-text as Source for Automated Semantic Document Annotation

Sep 27, 2017
Lukas Galke, Florian Mai, Alan Schelten, Dennis Brunsch, Ansgar Scherp

A significant part of the largest Knowledge Graph today, the Linked Open Data cloud, consists of metadata about documents such as publications, news reports, and other media articles. While the widespread access to the document metadata is a tremendous advancement, it is yet not so easy to assign semantic annotations and organize the documents along semantic concepts. Providing semantic annotations like concepts in SKOS thesauri is a classical research topic, but typically it is conducted on the full-text of the documents. For the first time, we offer a systematic comparison of classification approaches to investigate how far semantic annotations can be conducted using just the metadata of the documents such as titles published as labels on the Linked Open Data cloud. We compare the classifications obtained from analyzing the documents' titles with semantic annotations obtained from analyzing the full-text. Apart from the prominent text classification baselines kNN and SVM, we also compare recent techniques of Learning to Rank and neural networks and revisit the traditional methods logistic regression, Rocchio, and Naive Bayes. The results show that across three of our four datasets, the performance of the classifications using only titles reaches over 90% of the quality compared to the classification performance when using the full-text. Thus, conducting document classification by just using the titles is a reasonable approach for automated semantic annotation and opens up new possibilities for enriching Knowledge Graphs.

* Accepted as SHORT PAPER by K-CAP 2017, 9 pages, 1 figure, 3 tables 

  Access Paper or Ask Questions

Feature extraction using Latent Dirichlet Allocation and Neural Networks: A case study on movie synopses

Apr 05, 2016
Despoina Christou

Feature extraction has gained increasing attention in the field of machine learning, as in order to detect patterns, extract information, or predict future observations from big data, the urge of informative features is crucial. The process of extracting features is highly linked to dimensionality reduction as it implies the transformation of the data from a sparse high-dimensional space, to higher level meaningful abstractions. This dissertation employs Neural Networks for distributed paragraph representations, and Latent Dirichlet Allocation to capture higher level features of paragraph vectors. Although Neural Networks for distributed paragraph representations are considered the state of the art for extracting paragraph vectors, we show that a quick topic analysis model such as Latent Dirichlet Allocation can provide meaningful features too. We evaluate the two methods on the CMU Movie Summary Corpus, a collection of 25,203 movie plot summaries extracted from Wikipedia. Finally, for both approaches, we use K-Nearest Neighbors to discover similar movies, and plot the projected representations using T-Distributed Stochastic Neighbor Embedding to depict the context similarities. These similarities, expressed as movie distances, can be used for movies recommendation. The recommended movies of this approach are compared with the recommended movies from IMDB, which use a collaborative filtering recommendation approach, to show that our two models could constitute either an alternative or a supplementary recommendation approach.

  Access Paper or Ask Questions

Adaptive Contract Design for Crowdsourcing Markets: Bandit Algorithms for Repeated Principal-Agent Problems

Sep 02, 2015
Chien-Ju Ho, Aleksandrs Slivkins, Jennifer Wortman Vaughan

Crowdsourcing markets have emerged as a popular platform for matching available workers with tasks to complete. The payment for a particular task is typically set by the task's requester, and may be adjusted based on the quality of the completed work, for example, through the use of "bonus" payments. In this paper, we study the requester's problem of dynamically adjusting quality-contingent payments for tasks. We consider a multi-round version of the well-known principal-agent model, whereby in each round a worker makes a strategic choice of the effort level which is not directly observable by the requester. In particular, our formulation significantly generalizes the budget-free online task pricing problems studied in prior work. We treat this problem as a multi-armed bandit problem, with each "arm" representing a potential contract. To cope with the large (and in fact, infinite) number of arms, we propose a new algorithm, AgnosticZooming, which discretizes the contract space into a finite number of regions, effectively treating each region as a single arm. This discretization is adaptively refined, so that more promising regions of the contract space are eventually discretized more finely. We analyze this algorithm, showing that it achieves regret sublinear in the time horizon and substantially improves over non-adaptive discretization (which is the only competing approach in the literature). Our results advance the state of art on several different topics: the theory of crowdsourcing markets, principal-agent problems, multi-armed bandits, and dynamic pricing.

* This is the full version of a paper in the ACM Conference on Economics and Computation (ACM-EC), 2014 

  Access Paper or Ask Questions