Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Topic": models, code, and papers

Coronavirus on Social Media: Analyzing Misinformation in Twitter Conversations

Mar 26, 2020
Karishma Sharma, Sungyong Seo, Chuizheng Meng, Sirisha Rambhatla, Aastha Dua, Yan Liu

The ongoing Coronavirus Disease (COVID-19) pandemic highlights the interconnected-ness of our present-day globalized world. With social distancing policies in place, virtual communication has become an important source of (mis)information. As increasing number of people rely on social media platforms for news, identifying misinformation has emerged as a critical task in these unprecedented times. In addition to being malicious, the spread of such information poses a serious public health risk. To this end, we design a dashboard to track misinformation on popular social media news sharing platform - Twitter. Our dashboard allows visibility into the social media discussions around Coronavirus and the quality of information shared on the platform as the situation evolves. We collect streaming data using the Twitter API from March 1, 2020 to date and provide analysis of topic clusters and social sentiments related to important emerging policies such as "#socialdistancing" and "#workfromhome". We track emerging hashtags over time, and provide location and time sensitive analysis of sentiments. In addition, we study the challenging problem of misinformation on social media, and provide a detection method to identify false, misleading and clickbait contents from Twitter information cascades. The dashboard maintains an evolving list of detected misinformation cascades with the corresponding detection scores, accessible online at

  Access Paper or Ask Questions

CHAOS Challenge -- Combined (CT-MR) Healthy Abdominal Organ Segmentation

Jan 17, 2020
A. Emre Kavur, N. Sinem Gezer, Mustafa Barış, Pierre-Henri Conze, Vladimir Groza, Duc Duy Pham, Soumick Chatterjee, Philipp Ernst, Savaş Özkan, Bora Baydar, Dmitry Lachinov, Shuo Han, Josef Pauli, Fabian Isensee, Matthias Perkonigg, Rachana Sathish, Ronnie Rajan, Sinem Aslan, Debdoot Sheet, Gurbandurdy Dovletov, Oliver Speck, Andreas Nürnberger, Klaus H. Maier-Hein, Gözde Bozdağı Akar, Gözde Ünal, Oğuz Dicle, M. Alper Selver

Segmentation of abdominal organs has been a comprehensive, yet unresolved, research field for many years. In the last decade, intensive developments in deep learning (DL) have introduced new state-of-the-art segmentation systems. Despite outperforming the overall accuracy of existing systems, the effects of DL model properties and parameters on the performance is hard to interpret. This makes comparative analysis a necessary tool to achieve explainable studies and systems. Moreover, the performance of DL for emerging learning approaches such as cross-modality and multi-modal tasks have been rarely discussed. In order to expand the knowledge in these topics, CHAOS -- Combined (CT-MR) Healthy Abdominal Organ Segmentation challenge has been organized in the IEEE International Symposium on Biomedical Imaging (ISBI), 2019, in Venice, Italy. Despite a large number of the previous abdomen related challenges, the majority of which are focused on tumor/lesion detection and/or classification with a single modality, CHAOS provides both abdominal CT and MR data from healthy subjects. Five different and complementary tasks have been designed to analyze the capabilities of the current approaches from multiple perspectives. The results are investigated thoroughly, compared with manual annotations and interactive methods. The outcomes are reported in detail to reflect the latest advancements in the field. CHAOS challenge and data will be available online to provide a continuous benchmark resource for segmentation.

* 10 pages, 2 figures 

  Access Paper or Ask Questions

Intelligent image synthesis to attack a segmentation CNN using adversarial learning

Sep 24, 2019
Liang Chen, Paul Bentley, Kensaku Mori, Kazunari Misawa, Michitaka Fujiwara, Daniel Rueckert

Deep learning approaches based on convolutional neural networks (CNNs) have been successful in solving a number of problems in medical imaging, including image segmentation. In recent years, it has been shown that CNNs are vulnerable to attacks in which the input image is perturbed by relatively small amounts of noise so that the CNN is no longer able to perform a segmentation of the perturbed image with sufficient accuracy. Therefore, exploring methods on how to attack CNN-based models as well as how to defend models against attacks have become a popular topic as this also provides insights into the performance and generalization abilities of CNNs. However, most of the existing work assumes unrealistic attack models, i.e. the resulting attacks were specified in advance. In this paper, we propose a novel approach for generating adversarial examples to attack CNN-based segmentation models for medical images. Our approach has three key features: 1) The generated adversarial examples exhibit anatomical variations (in form of deformations) as well as appearance perturbations; 2) The adversarial examples attack segmentation models so that the Dice scores decrease by a pre-specified amount; 3) The attack is not required to be specified beforehand. We have evaluated our approach on CNN-based approaches for the multi-organ segmentation problem in 2D CT images. We show that the proposed approach can be used to attack different CNN-based segmentation models.

  Access Paper or Ask Questions

Towards automatic estimation of conversation floors within F-formations

Jul 31, 2019
Chirag Raman, Hayley Hung

The detection of free-standing conversing groups has received significant attention in recent years. In the absence of a formal definition, most studies operationalize the notion of a conversation group either through a spatial or a temporal lens. Spatially, the most commonly used representation is the F-formation, defined by social scientists as the configuration in which people arrange themselves to sustain an interaction. However, the use of this representation is often accompanied with the simplifying assumption that a single conversation occurs within an F-formation. Temporally, various categories have been used to organize conversational units; these include, among others, turn, topic, and floor. Some of these concepts are hard to define objectively by themselves. The present work constitutes an initial exploration into unifying these perspectives by primarily posing the question: can we use the observation of simultaneous speaker turns to infer whether multiple conversation floors exist within an F-formation? We motivate a metric for the existence of distinct conversation floors based on simultaneous speaker turns, and provide an analysis using this metric to characterize conversations across F-formations of varying cardinality. We contribute two key findings: firstly, at the average speaking turn duration of about two seconds for humans, there is evidence for the existence of multiple floors within an F-formation; and secondly, an increase in the cardinality of an F-formation correlates with a decrease in duration of simultaneous speaking turns.

* 8th International Conference on Affective Computing & Intelligent Interaction EMERGent Workshop, 7 pages, 4 Figures, 2 Tables 

  Access Paper or Ask Questions

Arena: A General Evaluation Platform and Building Toolkit for Multi-Agent Intelligence

May 30, 2019
Yuhang Song, Jianyi Wang, Thomas Lukasiewicz, Zhenghua Xu, Mai Xu, Zihan Ding, Lianlong Wu

Learning agents that are not only capable of taking tests but are also innovating are becoming a hot topic in artificial intelligence (AI). One of the most promising paths towards this vision is multi-agent learning, where agents act as the environment for each other, and improving each agent means proposing new problems for others. However, the existing evaluation platforms are either not compatible with multi-agent settings, or limited to a specific game. That is, there is not yet a general evaluation platform for research on multi-agent intelligence. To this end, we introduce Arena, a general evaluation platform for multi-agent intelligence with 35 games of diverse logic and representations. Furthermore, multi-agent intelligence is still at the stage where many problems remain unexplored. Therefore, we provide a building toolkit for researchers to easily invent and build novel multi-agent problems from the provided games set based on a GUI-configurable social tree and five basic multi-agent reward schemes. Finally, we provide python implementations of five state-of-the-art deep multi-agent reinforcement learning baselines. Along with the baseline implementations, we release a set of 100 best agents/teams that we can train with different training schemes for each game, as the base for evaluating agents with population performance. As such, the research community can perform comparisons under a stable and uniform standard.

  Access Paper or Ask Questions

Transform-Invariant Non-Parametric Clustering of Covariance Matrices and its Application to Unsupervised Joint Segmentation and Action Discovery

Oct 27, 2017
Nadia Figueroa, Aude Billard

In this work, we tackle the problem of transform-invariant unsupervised learning in the space of Covariance matrices and applications thereof. We begin by introducing the Spectral Polytope Covariance Matrix (SPCM) Similarity function; a similarity function for Covariance matrices, invariant to any type of transformation. We then derive the SPCM-CRP mixture model, a transform-invariant non-parametric clustering approach for Covariance matrices that leverages the proposed similarity function, spectral embedding and the distance-dependent Chinese Restaurant Process (dd-CRP) (Blei and Frazier, 2011). The scalability and applicability of these two contributions is extensively validated on real-world Covariance matrix datasets from diverse research fields. Finally, we couple the SPCM-CRP mixture model with the Bayesian non-parametric Indian Buffet Process (IBP) - Hidden Markov Model (HMM) (Fox et al., 2009), to jointly segment and discover transform-invariant action primitives from complex sequential data. Resulting in a topic-modeling inspired hierarchical model for unsupervised time-series data analysis which we call ICSC-HMM (IBP Coupled SPCM-CRP Hidden Markov Model). The ICSC-HMM is validated on kinesthetic demonstrations of uni-manual and bi-manual cooking tasks; achieving unsupervised human-level decomposition of complex sequential tasks.

* 51 pages, 20 figures. Submitted to Journal of Machine Learning Research, currently under review 

  Access Paper or Ask Questions

Greedy Sampling of Graph Signals

Sep 12, 2017
Luiz F. O. Chamon, Alejandro Ribeiro

Sampling is a fundamental topic in graph signal processing, having found applications in estimation, clustering, and video compression. In contrast to traditional signal processing, the irregularity of the signal domain makes selecting a sampling set non-trivial and hard to analyze. Indeed, though conditions for graph signal interpolation from noiseless samples exist, they do not lead to a unique sampling set. The presence of noise makes choosing among these sampling sets a hard combinatorial problem. Although greedy sampling schemes are commonly used in practice, they have no performance guarantee. This work takes a twofold approach to address this issue. First, universal performance bounds are derived for the Bayesian estimation of graph signals from noisy samples. In contrast to currently available bounds, they are not restricted to specific sampling schemes and hold for any sampling sets. Second, this paper provides near-optimal guarantees for greedy sampling by introducing the concept of approximate submodularity and updating the classical greedy bound. It then provides explicit bounds on the approximate supermodularity of the interpolation mean-square error showing that it can be optimized with worst-case guarantees using greedy search even though it is not supermodular. Simulations illustrate the derived bound for different graph models and show an application of graph signal sampling to reduce the complexity of kernel principal component analysis.

* 14 pages, 14 figures. Accepted for publication on IEEE Transactions on Signal Processing 

  Access Paper or Ask Questions

A Survey of Neuromorphic Computing and Neural Networks in Hardware

May 19, 2017
Catherine D. Schuman, Thomas E. Potok, Robert M. Patton, J. Douglas Birdwell, Mark E. Dean, Garrett S. Rose, James S. Plank

Neuromorphic computing has come to refer to a variety of brain-inspired computers, devices, and models that contrast the pervasive von Neumann computer architecture. This biologically inspired approach has created highly connected synthetic neurons and synapses that can be used to model neuroscience theories as well as solve challenging machine learning problems. The promise of the technology is to create a brain-like ability to learn and adapt, but the technical challenges are significant, starting with an accurate neuroscience model of how the brain works, to finding materials and engineering breakthroughs to build devices to support these models, to creating a programming framework so the systems can learn, to creating applications with brain-like capabilities. In this work, we provide a comprehensive survey of the research and motivations for neuromorphic computing over its history. We begin with a 35-year review of the motivations and drivers of neuromorphic computing, then look at the major research areas of the field, which we define as neuro-inspired models, algorithms and learning approaches, hardware and devices, supporting systems, and finally applications. We conclude with a broad discussion on the major research topics that need to be addressed in the coming years to see the promise of neuromorphic computing fulfilled. The goals of this work are to provide an exhaustive review of the research conducted in neuromorphic computing since the inception of the term, and to motivate further work by illuminating gaps in the field where new research is needed.

  Access Paper or Ask Questions