Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Topic": models, code, and papers

Using Google Trends as a proxy for occupant behavior to predict building energy consumption

Oct 31, 2021
Chun Fu, Clayton Miller

In recent years, the availability of larger amounts of energy data and advanced machine learning algorithms has created a surge in building energy prediction research. However, one of the variables in energy prediction models, occupant behavior, is crucial for prediction performance but hard-to-measure or time-consuming to collect from each building. This study proposes an approach that utilizes the search volume of topics (e.g., education} or Microsoft Excel) on the Google Trends platform as a proxy of occupant behavior and use of buildings. Linear correlations were first examined to explore the relationship between energy meter data and Google Trends search terms to infer building occupancy. Prediction errors before and after the inclusion of the trends of these terms were compared and analyzed based on the ASHRAE Great Energy Predictor III (GEPIII) competition dataset. The results show that highly correlated Google Trends data can effectively reduce the overall RMSLE error for a subset of the buildings to the level of the GEPIII competition's top five winning teams' performance. In particular, the RMSLE error reduction during public holidays and days with site-specific schedules are respectively reduced by 20-30% and 2-5%. These results show the potential of using Google Trends to improve energy prediction for a portion of the building stock by automatically identifying site-specific and holiday schedules.

  Access Paper or Ask Questions

Moving Object Detection for Event-based vision using Graph Spectral Clustering

Sep 30, 2021
Anindya Mondal, Shashant R, Jhony H. Giraldo, Thierry Bouwmans, Ananda S. Chowdhury

Moving object detection has been a central topic of discussion in computer vision for its wide range of applications like in self-driving cars, video surveillance, security, and enforcement. Neuromorphic Vision Sensors (NVS) are bio-inspired sensors that mimic the working of the human eye. Unlike conventional frame-based cameras, these sensors capture a stream of asynchronous 'events' that pose multiple advantages over the former, like high dynamic range, low latency, low power consumption, and reduced motion blur. However, these advantages come at a high cost, as the event camera data typically contains more noise and has low resolution. Moreover, as event-based cameras can only capture the relative changes in brightness of a scene, event data do not contain usual visual information (like texture and color) as available in video data from normal cameras. So, moving object detection in event-based cameras becomes an extremely challenging task. In this paper, we present an unsupervised Graph Spectral Clustering technique for Moving Object Detection in Event-based data (GSCEventMOD). We additionally show how the optimum number of moving objects can be automatically determined. Experimental comparisons on publicly available datasets show that the proposed GSCEventMOD algorithm outperforms a number of state-of-the-art techniques by a maximum margin of 30%.

* 10 pages, 5 figures, Accepted in ICCV Workshop 2021. arXiv admin note: text overlap with arXiv:2109.01879 

  Access Paper or Ask Questions

Harnessing Heterogeneity: Learning from Decomposed Feedback in Bayesian Modeling

Jul 07, 2021
Kai Wang, Bryan Wilder, Sze-chuan Suen, Bistra Dilkina, Milind Tambe

There is significant interest in learning and optimizing a complex system composed of multiple sub-components, where these components may be agents or autonomous sensors. Among the rich literature on this topic, agent-based and domain-specific simulations can capture complex dynamics and subgroup interaction, but optimizing over such simulations can be computationally and algorithmically challenging. Bayesian approaches, such as Gaussian processes (GPs), can be used to learn a computationally tractable approximation to the underlying dynamics but typically neglect the detailed information about subgroups in the complicated system. We attempt to find the best of both worlds by proposing the idea of decomposed feedback, which captures group-based heterogeneity and dynamics. We introduce a novel decomposed GP regression to incorporate the subgroup decomposed feedback. Our modified regression has provably lower variance -- and thus a more accurate posterior -- compared to previous approaches; it also allows us to introduce a decomposed GP-UCB optimization algorithm that leverages subgroup feedback. The Bayesian nature of our method makes the optimization algorithm trackable with a theoretical guarantee on convergence and no-regret property. To demonstrate the wide applicability of this work, we execute our algorithm on two disparate social problems: infectious disease control in a heterogeneous population and allocation of distributed weather sensors. Experimental results show that our new method provides significant improvement compared to the state-of-the-art.

  Access Paper or Ask Questions

A Systematic Collection of Medical Image Datasets for Deep Learning

Jun 24, 2021
Johann Li, Guangming Zhu, Cong Hua, Mingtao Feng, BasheerBennamoun, Ping Li, Xiaoyuan Lu, Juan Song, Peiyi Shen, Xu Xu, Lin Mei, Liang Zhang, Syed Afaq Ali Shah, Mohammed Bennamoun

The astounding success made by artificial intelligence (AI) in healthcare and other fields proves that AI can achieve human-like performance. However, success always comes with challenges. Deep learning algorithms are data-dependent and require large datasets for training. The lack of data in the medical imaging field creates a bottleneck for the application of deep learning to medical image analysis. Medical image acquisition, annotation, and analysis are costly, and their usage is constrained by ethical restrictions. They also require many resources, such as human expertise and funding. That makes it difficult for non-medical researchers to have access to useful and large medical data. Thus, as comprehensive as possible, this paper provides a collection of medical image datasets with their associated challenges for deep learning research. We have collected information of around three hundred datasets and challenges mainly reported between 2013 and 2020 and categorized them into four categories: head & neck, chest & abdomen, pathology & blood, and ``others''. Our paper has three purposes: 1) to provide a most up to date and complete list that can be used as a universal reference to easily find the datasets for clinical image analysis, 2) to guide researchers on the methodology to test and evaluate their methods' performance and robustness on relevant datasets, 3) to provide a ``route'' to relevant algorithms for the relevant medical topics, and challenge leaderboards.

* This paper has been submitted to one journal 

  Access Paper or Ask Questions

Insight from NLP Analysis: COVID-19 Vaccines Sentiments on Social Media

Jun 08, 2021
Tao Na, Wei Cheng, Dongming Li, Wanyu Lu, Hongjiang Li

Social media is an appropriate source for analyzing public attitudes towards the COVID-19 vaccine and various brands. Nevertheless, there are few relevant studies. In the research, we collected tweet posts by the UK and US residents from the Twitter API during the pandemic and designed experiments to answer three main questions concerning vaccination. To get the dominant sentiment of the civics, we performed sentiment analysis by VADER and proposed a new method that can count the individual's influence. This allows us to go a step further in sentiment analysis and explain some of the fluctuations in the data changing. The results indicated that celebrities could lead the opinion shift on social media in vaccination progress. Moreover, at the peak, nearly 40\% of the population in both countries have a negative attitude towards COVID-19 vaccines. Besides, we investigated how people's opinions toward different vaccine brands are. We found that the Pfizer vaccine enjoys the most popular among people. By applying the sentiment analysis tool, we discovered most people hold positive views toward the COVID-19 vaccine manufactured by most brands. In the end, we carried out topic modelling by using the LDA model. We found residents in the two countries are willing to share their views and feelings concerning the vaccine. Several death cases have occurred after vaccination. Due to these negative events, US residents are more worried about the side effects and safety of the vaccine.

  Access Paper or Ask Questions

Conversational Question Answering: A Survey

Jun 03, 2021
Munazza Zaib, Wei Emma Zhang, Quan Z. Sheng, Adnan Mahmood, Yang Zhang

Question answering (QA) systems provide a way of querying the information available in various formats including, but not limited to, unstructured and structured data in natural languages. It constitutes a considerable part of conversational artificial intelligence (AI) which has led to the introduction of a special research topic on Conversational Question Answering (CQA), wherein a system is required to understand the given context and then engages in multi-turn QA to satisfy the user's information needs. Whilst the focus of most of the existing research work is subjected to single-turn QA, the field of multi-turn QA has recently grasped attention and prominence owing to the availability of large-scale, multi-turn QA datasets and the development of pre-trained language models. With a good amount of models and research papers adding to the literature every year recently, there is a dire need of arranging and presenting the related work in a unified manner to streamline future research. This survey, therefore, is an effort to present a comprehensive review of the state-of-the-art research trends of CQA primarily based on reviewed papers from 2016-2021. Our findings show that there has been a trend shift from single-turn to multi-turn QA which empowers the field of Conversational AI from different perspectives. This survey is intended to provide an epitome for the research community with the hope of laying a strong foundation for the field of CQA.

  Access Paper or Ask Questions

Recent Standard Development Activities on Video Coding for Machines

May 26, 2021
Wen Gao, Shan Liu, Xiaozhong Xu, Manouchehr Rafie, Yuan Zhang, Igor Curcio

In recent years, video data has dominated internet traffic and becomes one of the major data formats. With the emerging 5G and internet of things (IoT) technologies, more and more videos are generated by edge devices, sent across networks, and consumed by machines. The volume of video consumed by machine is exceeding the volume of video consumed by humans. Machine vision tasks include object detection, segmentation, tracking, and other machine-based applications, which are quite different from those for human consumption. On the other hand, due to large volumes of video data, it is essential to compress video before transmission. Thus, efficient video coding for machines (VCM) has become an important topic in academia and industry. In July 2019, the international standardization organization, i.e., MPEG, created an Ad-Hoc group named VCM to study the requirements for potential standardization work. In this paper, we will address the recent development activities in the MPEG VCM group. Specifically, we will first provide an overview of the MPEG VCM group including use cases, requirements, processing pipelines, plan for potential VCM standards, followed by the evaluation framework including machine-vision tasks, dataset, evaluation metrics, and anchor generation. We then introduce technology solutions proposed so far and discuss the recent responses to the Call for Evidence issued by MPEG VCM group.

* 13 pages 

  Access Paper or Ask Questions

Avoiding bias when inferring race using name-based approaches

May 03, 2021
Diego Kozlowski, Dakota S. Murray, Alexis Bell, Will Hulsey, Vincent Larivière, Thema Monroe-White, Cassidy R. Sugimoto

Racial disparity in academia is a widely acknowledged problem. The quantitative understanding of racial-based systemic inequalities is an important step towards a more equitable research system. However, few large-scale analyses have been performed on this topic, mostly because of the lack of robust race-disambiguation algorithms. Identifying author information does not generally include the author's race. Therefore, an algorithm needs to be employed, using known information about authors, i.e., their names, to infer their perceived race. Nevertheless, as any other algorithm, the process of racial inference can generate biases if it is not carefully considered. When the research is focused on the understanding of racial-based inequalities, such biases undermine the objectives of the investigation and may perpetuate inequities. The goal of this article is to assess the biases introduced by the different approaches used name-based racial inference. We use information from US census and mortgage applications to infer the race of US author names in the Web of Science. We estimate the effects of using given and family names, thresholds or continuous distributions, and imputation. Our results demonstrate that the validity of name-based inference varies by race and ethnicity and that threshold approaches underestimate Black authors and overestimate White authors. We conclude with recommendations to avoid potential biases. This article fills an important research gap that will allow more systematic and unbiased studies on racial disparity in science.

  Access Paper or Ask Questions

COVID-19 and Big Data: Multi-faceted Analysis for Spatio-temporal Understanding of the Pandemic with Social Media Conversations

Apr 22, 2021
Shayan Fazeli, Davina Zamanzadeh, Anaelia Ovalle, Thu Nguyen, Gilbert Gee, Majid Sarrafzadeh

COVID-19 has been devastating the world since the end of 2019 and has continued to play a significant role in major national and worldwide events, and consequently, the news. In its wake, it has left no life unaffected. Having earned the world's attention, social media platforms have served as a vehicle for the global conversation about COVID-19. In particular, many people have used these sites in order to express their feelings, experiences, and observations about the pandemic. We provide a multi-faceted analysis of critical properties exhibited by these conversations on social media regarding the novel coronavirus pandemic. We present a framework for analysis, mining, and tracking the critical content and characteristics of social media conversations around the pandemic. Focusing on Twitter and Reddit, we have gathered a large-scale dataset on COVID-19 social media conversations. Our analyses cover tracking potential reports on virus acquisition, symptoms, conversation topics, and language complexity measures through time and by region across the United States. We also present a BERT-based model for recognizing instances of hateful tweets in COVID-19 conversations, which achieves a lower error-rate than the state-of-the-art performance. Our results provide empirical validation for the effectiveness of our proposed framework and further demonstrate that social media data can be efficiently leveraged to provide public health experts with inexpensive but thorough insight over the course of an outbreak.

  Access Paper or Ask Questions