Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Topic": models, code, and papers

Who Should Review Your Proposal? Interdisciplinary Topic Path Detection for Research Proposals

Mar 07, 2022
Meng Xiao, Ziyue Qiao, Yanjie Fu, Hao Dong, Yi Du, Pengyang Wang, Dong Li, Yuanchun Zhou

The peer merit review of research proposals has been the major mechanism to decide grant awards. Nowadays, research proposals have become increasingly interdisciplinary. It has been a longstanding challenge to assign proposals to appropriate reviewers. One of the critical steps in reviewer assignment is to generate accurate interdisciplinary topic labels for proposals. Existing systems mainly collect topic labels manually reported by discipline investigators. However, such human-reported labels can be non-accurate and incomplete. What role can AI play in developing a fair and precise proposal review system? In this evidential study, we collaborate with the National Science Foundation of China to address the task of automated interdisciplinary topic path detection. For this purpose, we develop a deep Hierarchical Interdisciplinary Research Proposal Classification Network (HIRPCN). We first propose a hierarchical transformer to extract the textual semantic information of proposals. We then design an interdisciplinary graph and leverage GNNs to learn representations of each discipline in order to extract interdisciplinary knowledge. After extracting the semantic and interdisciplinary knowledge, we design a level-wise prediction component to fuse the two types of knowledge representations and detect interdisciplinary topic paths for each proposal. We conduct extensive experiments and expert evaluations on three real-world datasets to demonstrate the effectiveness of our proposed model.

* 11 pages with 2 appendix, 13 figures 

  Access Paper or Ask Questions

Discovering topic structures of a temporally evolving document corpus

Dec 25, 2015
Adham Beykikhoshk, Ognjen Arandjelovic, Dinh Phung, Svetha Venkatesh

In this paper we describe a novel framework for the discovery of the topical content of a data corpus, and the tracking of its complex structural changes across the temporal dimension. In contrast to previous work our model does not impose a prior on the rate at which documents are added to the corpus nor does it adopt the Markovian assumption which overly restricts the type of changes that the model can capture. Our key technical contribution is a framework based on (i) discretization of time into epochs, (ii) epoch-wise topic discovery using a hierarchical Dirichlet process-based model, and (iii) a temporal similarity graph which allows for the modelling of complex topic changes: emergence and disappearance, evolution, splitting, and merging. The power of the proposed framework is demonstrated on two medical literature corpora concerned with the autism spectrum disorder (ASD) and the metabolic syndrome (MetS) -- both increasingly important research subjects with significant social and healthcare consequences. In addition to the collected ASD and metabolic syndrome literature corpora which we made freely available, our contribution also includes an extensive empirical analysis of the proposed framework. We describe a detailed and careful examination of the effects that our algorithms's free parameters have on its output, and discuss the significance of the findings both in the context of the practical application of our algorithm as well as in the context of the existing body of work on temporal topic analysis. Our quantitative analysis is followed by several qualitative case studies highly relevant to the current research on ASD and MetS, on which our algorithm is shown to capture well the actual developments in these fields.

* 2015 

  Access Paper or Ask Questions

Enhancing Extractive Text Summarization with Topic-Aware Graph Neural Networks

Oct 13, 2020
Peng Cui, Le Hu, Yuanchao Liu

Text summarization aims to compress a textual document to a short summary while keeping salient information. Extractive approaches are widely used in text summarization because of their fluency and efficiency. However, most of existing extractive models hardly capture inter-sentence relationships, particularly in long documents. They also often ignore the effect of topical information on capturing important contents. To address these issues, this paper proposes a graph neural network (GNN)-based extractive summarization model, enabling to capture inter-sentence relationships efficiently via graph-structured document representation. Moreover, our model integrates a joint neural topic model (NTM) to discover latent topics, which can provide document-level features for sentence selection. The experimental results demonstrate that our model not only substantially achieves state-of-the-art results on CNN/DM and NYT datasets but also considerably outperforms existing approaches on scientific paper datasets consisting of much longer documents, indicating its better robustness in document genres and lengths. Further discussions show that topical information can help the model preselect salient contents from an entire document, which interprets its effectiveness in long document summarization.

* Accepted by COLING(2020) 

  Access Paper or Ask Questions

Tag-Weighted Topic Model For Large-scale Semi-Structured Documents

Jul 30, 2015
Shuangyin Li, Jiefei Li, Guan Huang, Ruiyang Tan, Rong Pan

To date, there have been massive Semi-Structured Documents (SSDs) during the evolution of the Internet. These SSDs contain both unstructured features (e.g., plain text) and metadata (e.g., tags). Most previous works focused on modeling the unstructured text, and recently, some other methods have been proposed to model the unstructured text with specific tags. To build a general model for SSDs remains an important problem in terms of both model fitness and efficiency. We propose a novel method to model the SSDs by a so-called Tag-Weighted Topic Model (TWTM). TWTM is a framework that leverages both the tags and words information, not only to learn the document-topic and topic-word distributions, but also to infer the tag-topic distributions for text mining tasks. We present an efficient variational inference method with an EM algorithm for estimating the model parameters. Meanwhile, we propose three large-scale solutions for our model under the MapReduce distributed computing platform for modeling large-scale SSDs. The experimental results show the effectiveness, efficiency and the robustness by comparing our model with the state-of-the-art methods in document modeling, tags prediction and text classification. We also show the performance of the three distributed solutions in terms of time and accuracy on document modeling.


  Access Paper or Ask Questions

Generating Diversified Comments via Reader-Aware Topic Modeling and Saliency Detection

Feb 13, 2021
Wei Wang, Piji Li, Hai-Tao Zheng

Automatic comment generation is a special and challenging task to verify the model ability on news content comprehension and language generation. Comments not only convey salient and interesting information in news articles, but also imply various and different reader characteristics which we treat as the essential clues for diversity. However, most of the comment generation approaches only focus on saliency information extraction, while the reader-aware factors implied by comments are neglected. To address this issue, we propose a unified reader-aware topic modeling and saliency information detection framework to enhance the quality of generated comments. For reader-aware topic modeling, we design a variational generative clustering algorithm for latent semantic learning and topic mining from reader comments. For saliency information detection, we introduce Bernoulli distribution estimating on news content to select saliency information. The obtained topic representations as well as the selected saliency information are incorporated into the decoder to generate diversified and informative comments. Experimental results on three datasets show that our framework outperforms existing baseline methods in terms of both automatic metrics and human evaluation. The potential ethical issues are also discussed in detail.

* AAAI 2021. The potential ethical issues are also discussed in detail 

  Access Paper or Ask Questions

Automatic Description Construction for Math Expression via Topic Relation Graph

Apr 24, 2021
Ke Yuan, Zuoyu Yan, Yibo Li, Liangcai Gao, Zhi Tang

Math expressions are important parts of scientific and educational documents, but some of them may be challenging for junior scholars or students to understand. Nevertheless, constructing textual descriptions for math expressions is nontrivial. In this paper, we explore the feasibility to automatically construct descriptions for math expressions. But there are two challenges that need to be addressed: 1) finding relevant documents since a math equation understanding usually requires several topics, but these topics are often explained in different documents. 2) the sparsity of the collected relevant documents making it difficult to extract reasonable descriptions. Different documents mainly focus on different topics which makes model hard to extract salient information and organize them to form a description of math expressions. To address these issues, we propose a hybrid model (MathDes) which contains two important modules: Selector and Summarizer. In the Selector, a Topic Relation Graph (TRG) is proposed to obtain the relevant documents which contain the comprehensive information of math expressions. TRG is a graph built according to the citations between expressions. In the Summarizer, a summarization model under the Integer Linear Programming (ILP) framework is proposed. This module constructs the final description with the help of a timeline that is extracted from TRG. The experimental results demonstrate that our methods are promising for this task and outperform the baselines in all aspects.


  Access Paper or Ask Questions

Artificial intelligence for Sustainable Energy: A Contextual Topic Modeling and Content Analysis

Oct 02, 2021
Tahereh Saheb, Mohammad Dehghani

Parallel to the rising debates over sustainable energy and artificial intelligence solutions, the world is currently discussing the ethics of artificial intelligence and its possible negative effects on society and the environment. In these arguments, sustainable AI is proposed, which aims at advancing the pathway toward sustainability, such as sustainable energy. In this paper, we offered a novel contextual topic modeling combining LDA, BERT, and Clustering. We then combined these computational analyses with content analysis of related scientific publications to identify the main scholarly topics, sub-themes, and cross-topic themes within scientific research on sustainable AI in energy. Our research identified eight dominant topics including sustainable buildings, AI-based DSSs for urban water management, climate artificial intelligence, Agriculture 4, the convergence of AI with IoT, AI-based evaluation of renewable technologies, smart campus and engineering education, and AI-based optimization. We then recommended 14 potential future research strands based on the observed theoretical gaps. Theoretically, this analysis contributes to the existing literature on sustainable AI and sustainable energy, and practically, it intends to act as a general guide for energy engineers and scientists, AI scientists, and social scientists to widen their knowledge of sustainability in AI and energy convergence research.


  Access Paper or Ask Questions

Bridging the gap between supervised classification and unsupervised topic modelling for social-media assisted crisis management

Mar 22, 2021
Mikael Brunila, Rosie Zhao, Andrei Mircea, Sam Lumley, Renee Sieber

Social media such as Twitter provide valuable information to crisis managers and affected people during natural disasters. Machine learning can help structure and extract information from the large volume of messages shared during a crisis; however, the constantly evolving nature of crises makes effective domain adaptation essential. Supervised classification is limited by unchangeable class labels that may not be relevant to new events, and unsupervised topic modelling by insufficient prior knowledge. In this paper, we bridge the gap between the two and show that BERT embeddings finetuned on crisis-related tweet classification can effectively be used to adapt to a new crisis, discovering novel topics while preserving relevant classes from supervised training, and leveraging bidirectional self-attention to extract topic keywords. We create a dataset of tweets from a snowstorm to evaluate our method's transferability to new crises, and find that it outperforms traditional topic models in both automatic, and human evaluations grounded in the needs of crisis managers. More broadly, our method can be used for textual domain adaptation where the latent classes are unknown but overlap with known classes from other domains.

* Adapt-NLP @EACL2021; first three authors contributed equally; code available at https://github.com/smacawi/bert-topics/ 

  Access Paper or Ask Questions

Semantic Concept Spaces: Guided Topic Model Refinement using Word-Embedding Projections

Aug 01, 2019
Mennatallah El-Assady, Rebecca Kehlbeck, Christopher Collins, Daniel Keim, Oliver Deussen

We present a framework that allows users to incorporate the semantics of their domain knowledge for topic model refinement while remaining model-agnostic. Our approach enables users to (1) understand the semantic space of the model, (2) identify regions of potential conflicts and problems, and (3) readjust the semantic relation of concepts based on their understanding, directly influencing the topic modeling. These tasks are supported by an interactive visual analytics workspace that uses word-embedding projections to define concept regions which can then be refined. The user-refined concepts are independent of a particular document collection and can be transferred to related corpora. All user interactions within the concept space directly affect the semantic relations of the underlying vector space model, which, in turn, change the topic modeling. In addition to direct manipulation, our system guides the users' decision-making process through recommended interactions that point out potential improvements. This targeted refinement aims at minimizing the feedback required for an efficient human-in-the-loop process. We confirm the improvements achieved through our approach in two user studies that show topic model quality improvements through our visual knowledge externalization and learning process.

* IEEE Transactions on Visualization and Computer Graphics, 2019 

  Access Paper or Ask Questions

Scalable Inference for Nested Chinese Restaurant Process Topic Models

Feb 23, 2017
Jianfei Chen, Jun Zhu, Jie Lu, Shixia Liu

Nested Chinese Restaurant Process (nCRP) topic models are powerful nonparametric Bayesian methods to extract a topic hierarchy from a given text corpus, where the hierarchical structure is automatically determined by the data. Hierarchical Latent Dirichlet Allocation (hLDA) is a popular instance of nCRP topic models. However, hLDA has only been evaluated at small scale, because the existing collapsed Gibbs sampling and instantiated weight variational inference algorithms either are not scalable or sacrifice inference quality with mean-field assumptions. Moreover, an efficient distributed implementation of the data structures, such as dynamically growing count matrices and trees, is challenging. In this paper, we propose a novel partially collapsed Gibbs sampling (PCGS) algorithm, which combines the advantages of collapsed and instantiated weight algorithms to achieve good scalability as well as high model quality. An initialization strategy is presented to further improve the model quality. Finally, we propose an efficient distributed implementation of PCGS through vectorization, pre-processing, and a careful design of the concurrent data structures and communication strategy. Empirical studies show that our algorithm is 111 times more efficient than the previous open-source implementation for hLDA, with comparable or even better model quality. Our distributed implementation can extract 1,722 topics from a 131-million-document corpus with 28 billion tokens, which is 4-5 orders of magnitude larger than the previous largest corpus, with 50 machines in 7 hours.


  Access Paper or Ask Questions

<<
42
43
44
45
46
47
48
49
50
51
52
53
54
>>