Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Topic": models, code, and papers

Machine Learning Application Development: Practitioners' Insights

Dec 31, 2021
Md Saidur Rahman, Foutse Khomh, Alaleh Hamidi, Jinghui Cheng, Giuliano Antoniol, Hironori Washizaki

Nowadays, intelligent systems and services are getting increasingly popular as they provide data-driven solutions to diverse real-world problems, thanks to recent breakthroughs in Artificial Intelligence (AI) and Machine Learning (ML). However, machine learning meets software engineering not only with promising potentials but also with some inherent challenges. Despite some recent research efforts, we still do not have a clear understanding of the challenges of developing ML-based applications and the current industry practices. Moreover, it is unclear where software engineering researchers should focus their efforts to better support ML application developers. In this paper, we report about a survey that aimed to understand the challenges and best practices of ML application development. We synthesize the results obtained from 80 practitioners (with diverse skills, experience, and application domains) into 17 findings; outlining challenges and best practices for ML application development. Practitioners involved in the development of ML-based software systems can leverage the summarized best practices to improve the quality of their system. We hope that the reported challenges will inform the research community about topics that need to be investigated to improve the engineering process and the quality of ML-based applications.

  Access Paper or Ask Questions

Relative Distributed Formation and Obstacle Avoidance with Multi-agent Reinforcement Learning

Nov 14, 2021
Yuzi Yan, Xiaoxiang Li, Xinyou Qiu, Jiantao Qiu, Jian Wang, Yu Wang, Yuan Shen

Multi-agent formation as well as obstacle avoidance is one of the most actively studied topics in the field of multi-agent systems. Although some classic controllers like model predictive control (MPC) and fuzzy control achieve a certain measure of success, most of them require precise global information which is not accessible in harsh environments. On the other hand, some reinforcement learning (RL) based approaches adopt the leader-follower structure to organize different agents' behaviors, which sacrifices the collaboration between agents thus suffering from bottlenecks in maneuverability and robustness. In this paper, we propose a distributed formation and obstacle avoidance method based on multi-agent reinforcement learning (MARL). Agents in our system only utilize local and relative information to make decisions and control themselves distributively. Agent in the multi-agent system will reorganize themselves into a new topology quickly in case that any of them is disconnected. Our method achieves better performance regarding formation error, formation convergence rate and on-par success rate of obstacle avoidance compared with baselines (both classic control methods and another RL-based method). The feasibility of our method is verified by both simulation and hardware implementation with Ackermann-steering vehicles.

  Access Paper or Ask Questions

Importance Estimation from Multiple Perspectives for Keyphrase Extraction

Nov 11, 2021
Mingyang Song, Liping Jing, Lin Xiao

Keyphrase extraction is a fundamental task in Natural Language Processing, which usually contains two main parts: candidate keyphrase extraction and keyphrase importance estimation. From the view of human understanding documents, we typically measure the importance of phrase according to its syntactic accuracy, information saliency, and concept consistency simultaneously. However, most existing keyphrase extraction approaches only focus on the part of them, which leads to biased results. In this paper, we propose a new approach to estimate the importance of keyphrase from multiple perspectives (called as \textit{KIEMP}) and further improve the performance of keyphrase extraction. Specifically, \textit{KIEMP} estimates the importance of phrase with three modules: a chunking module to measure its syntactic accuracy, a ranking module to check its information saliency, and a matching module to judge the concept (i.e., topic) consistency between phrase and the whole document. These three modules are seamlessly jointed together via an end-to-end multi-task learning model, which is helpful for three parts to enhance each other and balance the effects of three perspectives. Experimental results on six benchmark datasets show that \textit{KIEMP} outperforms the existing state-of-the-art keyphrase extraction approaches in most cases.

* 11 pages, 2 figures, Accepted by EMNLP 2021 (main conference) 

  Access Paper or Ask Questions

Learning a Compressive Sensing Matrix with Structural Constraints via Maximum Mean Discrepancy Optimization

Oct 14, 2021
Michael Koller, Wolfgang Utschick

We introduce a learning-based algorithm to obtain a measurement matrix for compressive sensing related recovery problems. The focus lies on matrices with a constant modulus constraint which typically represent a network of analog phase shifters in hybrid precoding/combining architectures. We interpret a matrix with restricted isometry property as a mapping of points from a high- to a low-dimensional hypersphere. We argue that points on the low-dimensional hypersphere, namely, in the range of the matrix, should be uniformly distributed to increase robustness against measurement noise. This notion is formalized in an optimization problem which uses one of the maximum mean discrepancy metrics in the objective function. Recent success of such metrics in neural network related topics motivate a solution of the problem based on machine learning. Numerical experiments show better performance than random measurement matrices that are generally employed in compressive sensing contexts. Further, we adapt a method from the literature to the constant modulus constraint. This method can also compete with random matrices and it is shown to harmonize well with the proposed learning-based approach if it is used as an initialization. Lastly, we describe how other structural matrix constraints, e.g., a Toeplitz constraint, can be taken into account, too.

  Access Paper or Ask Questions

Comparing Prophet and Deep Learning to ARIMA in Forecasting Wholesale Food Prices

Aug 16, 2021
Lorenzo Menculini, Andrea Marini, Massimiliano Proietti, Alberto Garinei, Alessio Bozza, Cecilia Moretti, Marcello Marconi

Setting sale prices correctly is of great importance for firms, and the study and forecast of prices time series is therefore a relevant topic not only from a data science perspective but also from an economic and applicative one. In this paper we examine different techniques to forecast sale prices applied by an Italian food wholesaler, as a step towards the automation of pricing tasks usually taken care by human workforce. We consider ARIMA models and compare them to Prophet, a scalable forecasting tool by Facebook based on a generalized additive model, and to deep learning models exploiting Long Short--Term Memory (LSTM) and Convolutional Neural Networks (CNNs). ARIMA models are frequently used in econometric analyses, providing a good benchmark for the problem under study. Our results indicate that ARIMA models and LSTM neural networks perform similarly for the forecasting task under consideration, while the combination of CNNs and LSTMs attains the best overall accuracy, but requires more time to be tuned. On the contrary, Prophet is quick and easy to use, but considerably less accurate.t overall accuracy, but requires more time to be tuned. On the contrary, Prophet is quick and easy to use, but considerably less accurate.

* 17 pages, 9 figures, 10 tables. v3: improved structure and content, added figures and references 

  Access Paper or Ask Questions

Capability Iteration Network for Robot Path Planning

Apr 29, 2021
Buqing Nie, Yue Gao, Yidong Mei, Feng Gao

Path planning is an important topic in robotics. Recently, value iteration based deep learning models have achieved good performance such as Value Iteration Network(VIN). However, previous methods suffer from slow convergence and low accuracy on large maps, hence restricted in path planning for agents with complex kinematics such as legged robots. Therefore, we propose a new value iteration based path planning method called Capability Iteration Network(CIN). CIN utilizes sparse reward maps and encodes the capability of the agent with state-action transition probability, rather than a convolution kernel in previous models. Furthermore, two training methods including end-to-end training and training capability module alone are proposed, both of which speed up convergence greatly. Several path planning experiments in various scenarios, including on 2D, 3D grid world and real robots with different map sizes are conducted. The results demonstrate that CIN has higher accuracy, faster convergence, and lower sensitivity to random seed compared to previous VI-based models, hence more applicable for real robot path planning.

* 9 pages. IJRA 2021 accepted 

  Access Paper or Ask Questions

Multi-objective Feature Selection with Missing Data in Classification

Apr 18, 2021
Yu Xue, Yihang Tang, Xin Xu, Jiayu Liang, Ferrante Neri

Feature selection (FS) is an important research topic in machine learning. Usually, FS is modelled as a+ bi-objective optimization problem whose objectives are: 1) classification accuracy; 2) number of features. One of the main issues in real-world applications is missing data. Databases with missing data are likely to be unreliable. Thus, FS performed on a data set missing some data is also unreliable. In order to directly control this issue plaguing the field, we propose in this study a novel modelling of FS: we include reliability as the third objective of the problem. In order to address the modified problem, we propose the application of the non-dominated sorting genetic algorithm-III (NSGA-III). We selected six incomplete data sets from the University of California Irvine (UCI) machine learning repository. We used the mean imputation method to deal with the missing data. In the experiments, k-nearest neighbors (K-NN) is used as the classifier to evaluate the feature subsets. Experimental results show that the proposed three-objective model coupled with NSGA-III efficiently addresses the FS problem for the six data sets included in this study.

* 1 

  Access Paper or Ask Questions