Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Topic": models, code, and papers

Revisiting Optical Flow Estimation in 360 Videos

Oct 15, 2020
Keshav Bhandari, Ziliang Zong, Yan Yan

Nowadays 360 video analysis has become a significant research topic in the field since the appearance of high-quality and low-cost 360 wearable devices. In this paper, we propose a novel LiteFlowNet360 architecture for 360 videos optical flow estimation. We design LiteFlowNet360 as a domain adaptation framework from perspective video domain to 360 video domain. We adapt it from simple kernel transformation techniques inspired by Kernel Transformer Network (KTN) to cope with inherent distortion in 360 videos caused by the sphere-to-plane projection. First, we apply an incremental transformation of convolution layers in feature pyramid network and show that further transformation in inference and regularization layers are not important, hence reducing the network growth in terms of size and computation cost. Second, we refine the network by training with augmented data in a supervised manner. We perform data augmentation by projecting the images in a sphere and re-projecting to a plane. Third, we train LiteFlowNet360 in a self-supervised manner using target domain 360 videos. Experimental results show the promising results of 360 video optical flow estimation using the proposed novel architecture.

* 8 Pages, 7 figures, 1 Table, 5 Equations, 25th International Conference on Pattern Recognition Milan, Italy 

  Access Paper or Ask Questions

Multi-Modal Open-Domain Dialogue

Oct 02, 2020
Kurt Shuster, Eric Michael Smith, Da Ju, Jason Weston

Recent work in open-domain conversational agents has demonstrated that significant improvements in model engagingness and humanness metrics can be achieved via massive scaling in both pre-training data and model size (Adiwardana et al., 2020; Roller et al., 2020). However, if we want to build agents with human-like abilities, we must expand beyond handling just text. A particularly important topic is the ability to see images and communicate about what is perceived. With the goal of engaging humans in multi-modal dialogue, we investigate combining components from state-of-the-art open-domain dialogue agents with those from state-of-the-art vision models. We study incorporating different image fusion schemes and domain-adaptive pre-training and fine-tuning strategies, and show that our best resulting model outperforms strong existing models in multi-modal dialogue while simultaneously performing as well as its predecessor (text-only) BlenderBot (Roller et al., 2020) in text-based conversation. We additionally investigate and incorporate safety components in our final model, and show that such efforts do not diminish model performance with respect to engagingness metrics.

  Access Paper or Ask Questions

Depth image denoising using nuclear norm and learning graph model

Aug 09, 2020
Chenggang Yan, Zhisheng Li, Yongbing Zhang, Yutao Liu, Xiangyang Ji, Yongdong Zhang

The depth images denoising are increasingly becoming the hot research topic nowadays because they reflect the three-dimensional (3D) scene and can be applied in various fields of computer vision. But the depth images obtained from depth camera usually contain stains such as noise, which greatly impairs the performance of depth related applications. In this paper, considering that group-based image restoration methods are more effective in gathering the similarity among patches, a group based nuclear norm and learning graph (GNNLG) model was proposed. For each patch, we find and group the most similar patches within a searching window. The intrinsic low-rank property of the grouped patches is exploited in our model. In addition, we studied the manifold learning method and devised an effective optimized learning strategy to obtain the graph Laplacian matrix, which reflects the topological structure of image, to further impose the smoothing priors to the denoised depth image. To achieve fast speed and high convergence, the alternating direction method of multipliers (ADMM) is proposed to solve our GNNLG. The experimental results show that the proposed method is superior to other current state-of-the-art denoising methods in both subjective and objective criterion.

  Access Paper or Ask Questions

A Boundary Based Out-of-Distribution Classifier for Generalized Zero-Shot Learning

Aug 09, 2020
Xingyu Chen, Xuguang Lan, Fuchun Sun, Nanning Zheng

Generalized Zero-Shot Learning (GZSL) is a challenging topic that has promising prospects in many realistic scenarios. Using a gating mechanism that discriminates the unseen samples from the seen samples can decompose the GZSL problem to a conventional Zero-Shot Learning (ZSL) problem and a supervised classification problem. However, training the gate is usually challenging due to the lack of data in the unseen domain. To resolve this problem, in this paper, we propose a boundary based Out-of-Distribution (OOD) classifier which classifies the unseen and seen domains by only using seen samples for training. First, we learn a shared latent space on a unit hyper-sphere where the latent distributions of visual features and semantic attributes are aligned class-wisely. Then we find the boundary and the center of the manifold for each class. By leveraging the class centers and boundaries, the unseen samples can be separated from the seen samples. After that, we use two experts to classify the seen and unseen samples separately. We extensively validate our approach on five popular benchmark datasets including AWA1, AWA2, CUB, FLO and SUN. The experimental results show that our approach surpasses state-of-the-art approaches by a significant margin.

  Access Paper or Ask Questions

Unsupervised Domain Adaptation Through Transferring both the Source-Knowledge and Target-Relatedness Simultaneously

Mar 24, 2020
Qing Tian, Chuang Ma, Meng Cao, Songcan Chen

Unsupervised domain adaptation (UDA) is an emerging research topic in the field of machine learning and pattern recognition, which aims to help the learning of unlabeled target domain by transferring knowledge from the source domain. To perform UDA, a variety of methods have been proposed, most of which concentrate on the scenario of single source and single target domain (1S1T). However, in real applications, usually single source domain with multiple target domains are involved (1SmT), which cannot be handled directly by those 1S1T models. Unfortunately, although a few related works on 1SmT UDA have been proposed, nearly none of them model the source domain knowledge and leverage the target-relatedness jointly. To overcome these shortcomings, we herein propose a more general 1SmT UDA model through transferring both the Source-Knowledge and Target-Relatedness, UDA-SKTR for short. In this way, not only the supervision knowledge from the source domain, but also the potential relatedness among the target domains are simultaneously modeled for exploitation in the process of 1SmT UDA. In addition, we construct an alternating optimization algorithm to solve the variables of the proposed model with convergence guarantee. Finally, through extensive experiments on both benchmark and real datasets, we validate the effectiveness and superiority of the proposed method.

  Access Paper or Ask Questions

"How do urban incidents affect traffic speed?" A Deep Graph Convolutional Network for Incident-driven Traffic Speed Prediction

Dec 03, 2019
Qinge Xie, Tiancheng Guo, Yang Chen, Yu Xiao, Xin Wang, Ben Y. Zhao

Accurate traffic speed prediction is an important and challenging topic for transportation planning. Previous studies on traffic speed prediction predominately used spatio-temporal and context features for prediction. However, they have not made good use of the impact of urban traffic incidents. In this work, we aim to make use of the information of urban incidents to achieve a better prediction of traffic speed. Our incident-driven prediction framework consists of three processes. First, we propose a critical incident discovery method to discover urban traffic incidents with high impact on traffic speed. Second, we design a binary classifier, which uses deep learning methods to extract the latent incident impact features from the middle layer of the classifier. Combining above methods, we propose a Deep Incident-Aware Graph Convolutional Network (DIGC-Net) to effectively incorporate urban traffic incident, spatio-temporal, periodic and context features for traffic speed prediction. We conduct experiments on two real-world urban traffic datasets of San Francisco and New York City. The results demonstrate the superior performance of our model compare to the competing benchmarks.

* 18 pages, 8 figures 

  Access Paper or Ask Questions

Hidden Trigger Backdoor Attacks

Sep 30, 2019
Aniruddha Saha, Akshayvarun Subramanya, Hamed Pirsiavash

With the success of deep learning algorithms in various domains, studying adversarial attacks to secure deep models in real world applications has become an important research topic. Backdoor attacks are a form of adversarial attacks on deep networks where the attacker provides poisoned data to the victim to train the model with, and then activates the attack by showing a specific trigger pattern at the test time. Most state-of-the-art backdoor attacks either provide mislabeled poisoning data that is possible to identify by visual inspection, reveal the trigger in the poisoned data, or use noise and perturbation to hide the trigger. We propose a novel form of backdoor attack where poisoned data look natural with correct labels and also more importantly, the attacker hides the trigger in the poisoned data and keeps the trigger secret until the test time. We perform an extensive study on various image classification settings and show that our attack can fool the model by pasting the trigger at random locations on unseen images although the model performs well on clean data. We also show that our proposed attack cannot be easily defended using a state-of-the-art defense algorithm for backdoor attacks.

  Access Paper or Ask Questions

Is it Raining Outside? Detection of Rainfall using General-Purpose Surveillance Cameras

Aug 12, 2019
Joakim Bruslund Haurum, Chris H. Bahnsen, Thomas B. Moeslund

In integrated surveillance systems based on visual cameras, the mitigation of adverse weather conditions is an active research topic. Within this field, rain removal algorithms have been developed that artificially remove rain streaks from images or video. In order to deploy such rain removal algorithms in a surveillance setting, one must detect if rain is present in the scene. In this paper, we design a system for the detection of rainfall by the use of surveillance cameras. We reimplement the former state-of-the-art method for rain detection and compare it against a modern CNN-based method by utilizing 3D convolutions. The two methods are evaluated on our new AAU Visual Rain Dataset (VIRADA) that consists of 215 hours of general-purpose surveillance video from two traffic crossings. The results show that the proposed 3D CNN outperforms the previous state-of-the-art method by a large margin on all metrics, for both of the traffic crossings. Finally, it is shown that the choice of region-of-interest has a large influence on performance when trying to generalize the investigated methods. The AAU VIRADA dataset and our implementation of the two rain detection algorithms are publicly available at

* 10 pages, 7 figures, CVPR2019 V4AS workshop 

  Access Paper or Ask Questions

Fine-grained Event Categorization with Heterogeneous Graph Convolutional Networks

Jun 09, 2019
Hao Peng, Jianxin Li, Qiran Gong, Yangqiu Song, Yuanxing Ning, Kunfeng Lai, Philip S. Yu

Events are happening in real-world and real-time, which can be planned and organized occasions involving multiple people and objects. Social media platforms publish a lot of text messages containing public events with comprehensive topics. However, mining social events is challenging due to the heterogeneous event elements in texts and explicit and implicit social network structures. In this paper, we design an event meta-schema to characterize the semantic relatedness of social events and build an event-based heterogeneous information network (HIN) integrating information from external knowledge base, and propose a novel Pair-wise Popularity Graph Convolutional Network (PP-GCN) based fine-grained social event categorization model. We propose a Knowledgeable meta-paths Instances based social Event Similarity (KIES) between events and build a weighted adjacent matrix as input to the PP-GCN model. Comprehensive experiments on real data collections are conducted to compare various social event detection and clustering tasks. Experimental results demonstrate that our proposed framework outperforms other alternative social event categorization techniques.

* Accepted by IJCAI'19(International Joint Conference on Artificial Intelligence) 

  Access Paper or Ask Questions

Content based News Recommendation via Shortest Entity Distance over Knowledge Graphs

May 24, 2019
Kevin Joseph, Hui Jiang

Content-based news recommendation systems need to recommend news articles based on the topics and content of articles without using user specific information. Many news articles describe the occurrence of specific events and named entities including people, places or objects. In this paper, we propose a graph traversal algorithm as well as a novel weighting scheme for cold-start content based news recommendation utilizing these named entities. Seeking to create a higher degree of user-specific relevance, our algorithm computes the shortest distance between named entities, across news articles, over a large knowledge graph. Moreover, we have created a new human annotated data set for evaluating content based news recommendation systems. Experimental results show our method is suitable to tackle the hard cold-start problem and it produces stronger Pearson correlation to human similarity scores than other cold-start methods. Our method is also complementary and a combination with the conventional cold-start recommendation methods may yield significant performance gains. The dataset, CNRec, is available at:

  Access Paper or Ask Questions