Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Topic": models, code, and papers

Improving Medical Short Text Classification with Semantic Expansion Using Word-Cluster Embedding

Dec 05, 2018
Ying Shen, Qiang Zhang, Jin Zhang, Jiyue Huang, Yuming Lu, Kai Lei

Automatic text classification (TC) research can be used for real-world problems such as the classification of in-patient discharge summaries and medical text reports, which is beneficial to make medical documents more understandable to doctors. However, in electronic medical records (EMR), the texts containing sentences are shorter than that in general domain, which leads to the lack of semantic features and the ambiguity of semantic. To tackle this challenge, we propose to add word-cluster embedding to deep neural network for improving short text classification. Concretely, we first use hierarchical agglomerative clustering to cluster the word vectors in the semantic space. Then we calculate the cluster center vector which represents the implicit topic information of words in the cluster. Finally, we expand word vector with cluster center vector, and implement classifiers using CNN and LSTM respectively. To evaluate the performance of our proposed method, we conduct experiments on public data sets TREC and the medical short sentences data sets which is constructed and released by us. The experimental results demonstrate that our proposed method outperforms state-of-the-art baselines in short sentence classification on both medical domain and general domain.

* International Conference on Information Science and Applications ICISA 2018: Information Science and Applications 2018 pp 401-411 

  Access Paper or Ask Questions

Deep Face Recognition: A Survey

Sep 28, 2018
Mei Wang, Weihong Deng

Deep learning applies multiple processing layers to learn representations of data with multiple levels of feature extraction. This emerging technique has reshaped the research landscape of face recognition since 2014, launched by the breakthroughs of Deepface and DeepID methods. Since then, deep face recognition (FR) technique, which leverages the hierarchical architecture to learn discriminative face representation, has dramatically improved the state-of-the-art performance and fostered numerous successful real-world applications. In this paper, we provide a comprehensive survey of the recent developments on deep FR, covering the broad topics on algorithms, data, and scenes. First, we summarize different network architectures and loss functions proposed in the rapid evolution of the deep FR methods. Second, the related face processing methods are categorized into two classes: `one-to-many augmentation' and `many-to-one normalization'. Then, we summarize and compare the commonly used databases for both model training and evaluation. Third, we review miscellaneous scenes in deep FR, such as cross-factor, heterogenous, multiple-media and industry scenes. Finally, potential deficiencies of the current methods and several future directions are highlighted.

  Access Paper or Ask Questions

Fully Convolutional Networks and Generative Adversarial Networks Applied to Sclera Segmentation

Jul 09, 2018
Diego R. Lucio, Rayson Laroca, Evair Severo, Alceu S. Britto Jr., David Menotti

Due to the world's demand for security systems, biometrics can be seen as an important topic of research in computer vision. One of the biometric forms that has been gaining attention is the recognition based on sclera. The initial and paramount step for performing this type of recognition is the segmentation of the region of interest, i.e. the sclera. In this context, two approaches for such task based on the Fully Convolutional Network (FCN) and on Generative Adversarial Network (GAN) are introduced in this work. FCN is similar to a common convolution neural network, however the fully connected layers (i.e., the classification layers) are removed from the end of the network and the output is generated by combining the output of pooling layers from different convolutional ones. The GAN is based on the game theory, where we have two networks competing with each other to generate the best segmentation. In order to perform fair comparison with baselines and quantitative and objective evaluations of the proposed approaches, we provide to the scientific community new 1,300 manually segmented images from two databases. The experiments are performed on the UBIRIS.v2 and MICHE databases and the best performing configurations of our propositions achieved F-score's measures of 87.48% and 88.32%, respectively.

* Accepted for presentation at the IEEE International Conference on Biometrics: Theory, Applications, and Systems (BTAS) 2018 

  Access Paper or Ask Questions

Probabilistic Planning by Probabilistic Programming

Jan 25, 2018
Vaishak Belle

Automated planning is a major topic of research in artificial intelligence, and enjoys a long and distinguished history. The classical paradigm assumes a distinguished initial state, comprised of a set of facts, and is defined over a set of actions which change that state in one way or another. Planning in many real-world settings, however, is much more involved: an agent's knowledge is almost never simply a set of facts that are true, and actions that the agent intends to execute never operate the way they are supposed to. Thus, probabilistic planning attempts to incorporate stochastic models directly into the planning process. In this article, we briefly report on probabilistic planning through the lens of probabilistic programming: a programming paradigm that aims to ease the specification of structured probability distributions. In particular, we provide an overview of the features of two systems, HYPE and ALLEGRO, which emphasise different strengths of probabilistic programming that are particularly useful for complex modelling issues raised in probabilistic planning. Among other things, with these systems, one can instantiate planning problems with growing and shrinking state spaces, discrete and continuous probability distributions, and non-unique prior distributions in a first-order setting.

* Article at AAAI-18 Workshop on Planning and Inference 

  Access Paper or Ask Questions

The Open World of Micro-Videos

Apr 01, 2016
Phuc Xuan Nguyen, Gregory Rogez, Charless Fowlkes, Deva Ramanan

Micro-videos are six-second videos popular on social media networks with several unique properties. Firstly, because of the authoring process, they contain significantly more diversity and narrative structure than existing collections of video "snippets". Secondly, because they are often captured by hand-held mobile cameras, they contain specialized viewpoints including third-person, egocentric, and self-facing views seldom seen in traditional produced video. Thirdly, due to to their continuous production and publication on social networks, aggregate micro-video content contains interesting open-world dynamics that reflects the temporal evolution of tag topics. These aspects make micro-videos an appealing well of visual data for developing large-scale models for video understanding. We analyze a novel dataset of micro-videos labeled with 58 thousand tags. To analyze this data, we introduce viewpoint-specific and temporally-evolving models for video understanding, defined over state-of-the-art motion and deep visual features. We conclude that our dataset opens up new research opportunities for large-scale video analysis, novel viewpoints, and open-world dynamics.

  Access Paper or Ask Questions

Mapping Out Narrative Structures and Dynamics Using Networks and Textual Information

Mar 24, 2016
Semi Min, Juyong Park

Human communication is often executed in the form of a narrative, an account of connected events composed of characters, actions, and settings. A coherent narrative structure is therefore a requisite for a well-formulated narrative -- be it fictional or nonfictional -- for informative and effective communication, opening up the possibility of a deeper understanding of a narrative by studying its structural properties. In this paper we present a network-based framework for modeling and analyzing the structure of a narrative, which is further expanded by incorporating methods from computational linguistics to utilize the narrative text. Modeling a narrative as a dynamically unfolding system, we characterize its progression via the growth patterns of the character network, and use sentiment analysis and topic modeling to represent the actual content of the narrative in the form of interaction maps between characters with associated sentiment values and keywords. This is a network framework advanced beyond the simple occurrence-based one most often used until now, allowing one to utilize the unique characteristics of a given narrative to a high degree. Given the ubiquity and importance of narratives, such advanced network-based representation and analysis framework may lead to a more systematic modeling and understanding of narratives for social interactions, expression of human sentiments, and communication.

* 17 pages, 10 figures 

  Access Paper or Ask Questions

Robust Statistical Ranking: Theory and Algorithms

Aug 15, 2014
Qianqian Xu, Jiechao Xiong, Qingming Huang, Yuan Yao

Deeply rooted in classical social choice and voting theory, statistical ranking with paired comparison data experienced its renaissance with the wide spread of crowdsourcing technique. As the data quality might be significantly damaged in an uncontrolled crowdsourcing environment, outlier detection and robust ranking have become a hot topic in such data analysis. In this paper, we propose a robust ranking framework based on the principle of Huber's robust statistics, which formulates outlier detection as a LASSO problem to find sparse approximations of the cyclic ranking projection in Hodge decomposition. Moreover, simple yet scalable algorithms are developed based on Linearized Bregman Iteration to achieve an even less biased estimator than LASSO. Statistical consistency of outlier detection is established in both cases which states that when the outliers are strong enough and in Erdos-Renyi random graph sampling settings, outliers can be faithfully detected. Our studies are supported by experiments with both simulated examples and real-world data. The proposed framework provides us a promising tool for robust ranking with large scale crowdsourcing data arising from computer vision, multimedia, machine learning, sociology, etc.

* 16 pages, 8 figures 

  Access Paper or Ask Questions

Indoor Activity Detection and Recognition for Sport Games Analysis

Apr 25, 2014
Georg Waltner, Thomas Mauthner, Horst Bischof

Activity recognition in sport is an attractive field for computer vision research. Game, player and team analysis are of great interest and research topics within this field emerge with the goal of automated analysis. The very specific underlying rules of sports can be used as prior knowledge for the recognition task and present a constrained environment for evaluation. This paper describes recognition of single player activities in sport with special emphasis on volleyball. Starting from a per-frame player-centered activity recognition, we incorporate geometry and contextual information via an activity context descriptor that collects information about all player's activities over a certain timespan relative to the investigated player. The benefit of this context information on single player activity recognition is evaluated on our new real-life dataset presenting a total amount of almost 36k annotated frames containing 7 activity classes within 6 videos of professional volleyball games. Our incorporation of the contextual information improves the average player-centered classification performance of 77.56% by up to 18.35% on specific classes, proving that spatio-temporal context is an important clue for activity recognition.

* Part of the OAGM 2014 proceedings (arXiv:1404.3538) 

  Access Paper or Ask Questions

Topological characterizations to three types of covering approximation operators

Sep 29, 2012
Aiping Huang, William Zhu

Covering-based rough set theory is a useful tool to deal with inexact, uncertain or vague knowledge in information systems. Topology, one of the most important subjects in mathematics, provides mathematical tools and interesting topics in studying information systems and rough sets. In this paper, we present the topological characterizations to three types of covering approximation operators. First, we study the properties of topology induced by the sixth type of covering lower approximation operator. Second, some topological characterizations to the covering lower approximation operator to be an interior operator are established. We find that the topologies induced by this operator and by the sixth type of covering lower approximation operator are the same. Third, we study the conditions which make the first type of covering upper approximation operator be a closure operator, and find that the topology induced by the operator is the same as the topology induced by the fifth type of covering upper approximation operator. Forth, the conditions of the second type of covering upper approximation operator to be a closure operator and the properties of topology induced by it are established. Finally, these three topologies space are compared. In a word, topology provides a useful method to study the covering-based rough sets.

  Access Paper or Ask Questions

Transforming Graph Representations for Statistical Relational Learning

Mar 30, 2012
Ryan A. Rossi, Luke K. McDowell, David W. Aha, Jennifer Neville

Relational data representations have become an increasingly important topic due to the recent proliferation of network datasets (e.g., social, biological, information networks) and a corresponding increase in the application of statistical relational learning (SRL) algorithms to these domains. In this article, we examine a range of representation issues for graph-based relational data. Since the choice of relational data representation for the nodes, links, and features can dramatically affect the capabilities of SRL algorithms, we survey approaches and opportunities for relational representation transformation designed to improve the performance of these algorithms. This leads us to introduce an intuitive taxonomy for data representation transformations in relational domains that incorporates link transformation and node transformation as symmetric representation tasks. In particular, the transformation tasks for both nodes and links include (i) predicting their existence, (ii) predicting their label or type, (iii) estimating their weight or importance, and (iv) systematically constructing their relevant features. We motivate our taxonomy through detailed examples and use it to survey and compare competing approaches for each of these tasks. We also discuss general conditions for transforming links, nodes, and features. Finally, we highlight challenges that remain to be addressed.

  Access Paper or Ask Questions