Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Topic": models, code, and papers

Deep Neural Network Approximation for Custom Hardware: Where We've Been, Where We're Going

Jan 21, 2019
Erwei Wang, James J. Davis, Ruizhe Zhao, Ho-Cheung Ng, Xinyu Niu, Wayne Luk, Peter Y. K. Cheung, George A. Constantinides

Deep neural networks have proven to be particularly effective in visual and audio recognition tasks. Existing models tend to be computationally expensive and memory intensive, however, and so methods for hardware-oriented approximation have become a hot topic. Research has shown that custom hardware-based neural network accelerators can surpass their general-purpose processor equivalents in terms of both throughput and energy efficiency. Application-tailored accelerators, when co-designed with approximation-based network training methods, transform large, dense and computationally expensive networks into small, sparse and hardware-efficient alternatives, increasing the feasibility of network deployment. In this article, we provide a comprehensive evaluation of approximation methods for high-performance network inference along with in-depth discussion of their effectiveness for custom hardware implementation. We also include proposals for future research based on a thorough analysis of current trends. This article represents the first survey providing detailed comparisons of custom hardware accelerators featuring approximation for both convolutional and recurrent neural networks, through which we hope to inspire exciting new developments in the field.


  Access Paper or Ask Questions

Experiments with Neural Networks for Small and Large Scale Authorship Verification

Mar 17, 2018
Marjan Hosseinia, Arjun Mukherjee

We propose two models for a special case of authorship verification problem. The task is to investigate whether the two documents of a given pair are written by the same author. We consider the authorship verification problem for both small and large scale datasets. The underlying small-scale problem has two main challenges: First, the authors of the documents are unknown to us because no previous writing samples are available. Second, the two documents are short (a few hundred to a few thousand words) and may differ considerably in the genre and/or topic. To solve it we propose transformation encoder to transform one document of the pair into the other. This document transformation generates a loss which is used as a recognizable feature to verify if the authors of the pair are identical. For the large scale problem where various authors are engaged and more examples are available with larger length, a parallel recurrent neural network is proposed. It compares the language models of the two documents. We evaluate our methods on various types of datasets including Authorship Identification datasets of PAN competition, Amazon reviews, and machine learning articles. Experiments show that both methods achieve stable and competitive performance compared to the baselines.

* Accepted in CICLING 2018 

  Access Paper or Ask Questions

A Cyber Science Based Ontology for Artificial General Intelligence Containment

Jan 28, 2018
Jason M. Pittman, Courtney E. Soboleski

The development of artificial general intelligence is considered by many to be inevitable. What such intelligence does after becoming aware is not so certain. To that end, research suggests that the likelihood of artificial general intelligence becoming hostile to humans is significant enough to warrant inquiry into methods to limit such potential. Thus, containment of artificial general intelligence is a timely and meaningful research topic. While there is limited research exploring possible containment strategies, such work is bounded by the underlying field the strategies draw upon. Accordingly, we set out to construct an ontology to describe necessary elements in any future containment technology. Using existing academic literature, we developed a single domain ontology containing five levels, 32 codes, and 32 associated descriptors. Further, we constructed ontology diagrams to demonstrate intended relationships. We then identified humans, AGI, and the cyber world as novel agent objects necessary for future containment activities. Collectively, the work addresses three critical gaps: (a) identifying and arranging fundamental constructs; (b) situating AGI containment within cyber science; and (c) developing scientific rigor within the field.

* 12 pages, 4 figures, 3 tables 

  Access Paper or Ask Questions

Robust Causal Estimation in the Large-Sample Limit without Strict Faithfulness

Apr 06, 2017
Ioan Gabriel Bucur, Tom Claassen, Tom Heskes

Causal effect estimation from observational data is an important and much studied research topic. The instrumental variable (IV) and local causal discovery (LCD) patterns are canonical examples of settings where a closed-form expression exists for the causal effect of one variable on another, given the presence of a third variable. Both rely on faithfulness to infer that the latter only influences the target effect via the cause variable. In reality, it is likely that this assumption only holds approximately and that there will be at least some form of weak interaction. This brings about the paradoxical situation that, in the large-sample limit, no predictions are made, as detecting the weak edge invalidates the setting. We introduce an alternative approach by replacing strict faithfulness with a prior that reflects the existence of many 'weak' (irrelevant) and 'strong' interactions. We obtain a posterior distribution over the target causal effect estimator which shows that, in many cases, we can still make good estimates. We demonstrate the approach in an application on a simple linear-Gaussian setting, using the MultiNest sampling algorithm, and compare it with established techniques to show our method is robust even when strict faithfulness is violated.

* PMLR 54:1523-1531, 2017 
* 10 pages, 12 figures, Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS) 2017 

  Access Paper or Ask Questions

The Child is Father of the Man: Foresee the Success at the Early Stage

Aug 01, 2015
Liangyue Li, Hanghang Tong

Understanding the dynamic mechanisms that drive the high-impact scientific work (e.g., research papers, patents) is a long-debated research topic and has many important implications, ranging from personal career development and recruitment search, to the jurisdiction of research resources. Recent advances in characterizing and modeling scientific success have made it possible to forecast the long-term impact of scientific work, where data mining techniques, supervised learning in particular, play an essential role. Despite much progress, several key algorithmic challenges in relation to predicting long-term scientific impact have largely remained open. In this paper, we propose a joint predictive model to forecast the long-term scientific impact at the early stage, which simultaneously addresses a number of these open challenges, including the scholarly feature design, the non-linearity, the domain-heterogeneity and dynamics. In particular, we formulate it as a regularized optimization problem and propose effective and scalable algorithms to solve it. We perform extensive empirical evaluations on large, real scholarly data sets to validate the effectiveness and the efficiency of our method.

* Correct some typos in our KDD paper 

  Access Paper or Ask Questions

Learning LiNGAM based on data with more variables than observations

Aug 21, 2012
Shohei Shimizu

A very important topic in systems biology is developing statistical methods that automatically find causal relations in gene regulatory networks with no prior knowledge of causal connectivity. Many methods have been developed for time series data. However, discovery methods based on steady-state data are often necessary and preferable since obtaining time series data can be more expensive and/or infeasible for many biological systems. A conventional approach is causal Bayesian networks. However, estimation of Bayesian networks is ill-posed. In many cases it cannot uniquely identify the underlying causal network and only gives a large class of equivalent causal networks that cannot be distinguished between based on the data distribution. We propose a new discovery algorithm for uniquely identifying the underlying causal network of genes. To the best of our knowledge, the proposed method is the first algorithm for learning gene networks based on a fully identifiable causal model called LiNGAM. We here compare our algorithm with competing algorithms using artificially-generated data, although it is definitely better to test it based on real microarray gene expression data.

* 12 pages, 4 figures 

  Access Paper or Ask Questions

A practical approach to language complexity: a Wikipedia case study

Aug 18, 2012
Taha Yasseri, András Kornai, János Kertész

In this paper we present statistical analysis of English texts from Wikipedia. We try to address the issue of language complexity empirically by comparing the simple English Wikipedia (Simple) to comparable samples of the main English Wikipedia (Main). Simple is supposed to use a more simplified language with a limited vocabulary, and editors are explicitly requested to follow this guideline, yet in practice the vocabulary richness of both samples are at the same level. Detailed analysis of longer units (n-grams of words and part of speech tags) shows that the language of Simple is less complex than that of Main primarily due to the use of shorter sentences, as opposed to drastically simplified syntax or vocabulary. Comparing the two language varieties by the Gunning readability index supports this conclusion. We also report on the topical dependence of language complexity, e.g. that the language is more advanced in conceptual articles compared to person-based (biographical) and object-based articles. Finally, we investigate the relation between conflict and language complexity by analyzing the content of the talk pages associated to controversial and peacefully developing articles, concluding that controversy has the effect of reducing language complexity.

* PLoS ONE 7(11): e48386 (2012) 
* 2 new figures, 1 new section, and 2 new supporting texts 

  Access Paper or Ask Questions

Multi-Armed Bandits in Metric Spaces

Sep 29, 2008
Robert Kleinberg, Aleksandrs Slivkins, Eli Upfal

In a multi-armed bandit problem, an online algorithm chooses from a set of strategies in a sequence of trials so as to maximize the total payoff of the chosen strategies. While the performance of bandit algorithms with a small finite strategy set is quite well understood, bandit problems with large strategy sets are still a topic of very active investigation, motivated by practical applications such as online auctions and web advertisement. The goal of such research is to identify broad and natural classes of strategy sets and payoff functions which enable the design of efficient solutions. In this work we study a very general setting for the multi-armed bandit problem in which the strategies form a metric space, and the payoff function satisfies a Lipschitz condition with respect to the metric. We refer to this problem as the "Lipschitz MAB problem". We present a complete solution for the multi-armed problem in this setting. That is, for every metric space (L,X) we define an isometry invariant which bounds from below the performance of Lipschitz MAB algorithms for X, and we present an algorithm which comes arbitrarily close to meeting this bound. Furthermore, our technique gives even better results for benign payoff functions.

* 16 pages, 0 figures 

  Access Paper or Ask Questions

A Review on Viewpoints and Path-planning for UAV-based 3D Reconstruction

May 07, 2022
Mehdi Maboudi, MohammadReza Homaei, Soohwan Song, Shirin Malihi, Mohammad Saadatseresht, Markus Gerke

Unmanned aerial vehicles (UAVs) are widely used platforms to carry data capturing sensors for various applications. The reason for this success can be found in many aspects: the high maneuverability of the UAVs, the capability of performing autonomous data acquisition, flying at different heights, and the possibility to reach almost any vantage point. The selection of appropriate viewpoints and planning the optimum trajectories of UAVs is an emerging topic that aims at increasing the automation, efficiency and reliability of the data capturing process to achieve a dataset with desired quality. On the other hand, 3D reconstruction using the data captured by UAVs is also attracting attention in research and industry. This review paper investigates a wide range of model-free and model-based algorithms for viewpoint and path planning for 3D reconstruction of large-scale objects. The analyzed approaches are limited to those that employ a single-UAV as a data capturing platform for outdoor 3D reconstruction purposes. In addition to discussing the evaluation strategies, this paper also highlights the innovations and limitations of the investigated approaches. It concludes with a critical analysis of the existing challenges and future research perspectives.

* 33 page- 177 references 

  Access Paper or Ask Questions

Weakly Supervised Attended Object Detection Using Gaze Data as Annotations

Apr 14, 2022
Michele Mazzamuto, Francesco Ragusa, Antonino Furnari, Giovanni Signorello, Giovanni Maria Farinella

We consider the problem of detecting and recognizing the objects observed by visitors (i.e., attended objects) in cultural sites from egocentric vision. A standard approach to the problem involves detecting all objects and selecting the one which best overlaps with the gaze of the visitor, measured through a gaze tracker. Since labeling large amounts of data to train a standard object detector is expensive in terms of costs and time, we propose a weakly supervised version of the task which leans only on gaze data and a frame-level label indicating the class of the attended object. To study the problem, we present a new dataset composed of egocentric videos and gaze coordinates of subjects visiting a museum. We hence compare three different baselines for weakly supervised attended object detection on the collected data. Results show that the considered approaches achieve satisfactory performance in a weakly supervised manner, which allows for significant time savings with respect to a fully supervised detector based on Faster R-CNN. To encourage research on the topic, we publicly release the code and the dataset at the following url: https://iplab.dmi.unict.it/WS_OBJ_DET/


  Access Paper or Ask Questions

<<
432
433
434
435
436
437
438
439
440
441
442
443
444
>>