Spoken dialogue systems that assist users to solve complex tasks such as movie ticket booking have become an emerging research topic in artificial intelligence and natural language processing areas. With a well-designed dialogue system as an intelligent personal assistant, people can accomplish certain tasks more easily via natural language interactions. Today there are several virtual intelligent assistants in the market; however, most systems only focus on single modality, such as textual or vocal interaction. A multimodal interface has various advantages: (1) allowing human to communicate with machines in a natural and concise form using the mixture of modalities that most precisely convey the intention to satisfy communication needs, and (2) providing more engaging experience by natural and human-like feedback. This paper explores a brand new research direction, which aims at bridging dialogue generation and facial expression synthesis for better multimodal interaction. The goal is to generate dialogue responses and simultaneously synthesize corresponding visual expressions on faces, which is also an ultimate step toward more human-like virtual assistants.
Open-domain dialogue agents must be able to converse about many topics while incorporating knowledge about the user into the conversation. In this work we address the acquisition of such knowledge, for personalization in downstream Web applications, by extracting personal attributes from conversations. This problem is more challenging than the established task of information extraction from scientific publications or Wikipedia articles, because dialogues often give merely implicit cues about the speaker. We propose methods for inferring personal attributes, such as profession, age or family status, from conversations using deep learning. Specifically, we propose several Hidden Attribute Models, which are neural networks leveraging attention mechanisms and embeddings. Our methods are trained on a per-predicate basis to output rankings of object values for a given subject-predicate combination (e.g., ranking the doctor and nurse professions high when speakers talk about patients, emergency rooms, etc). Experiments with various conversational texts including Reddit discussions, movie scripts and a collection of crowdsourced personal dialogues demonstrate the viability of our methods and their superior performance compared to state-of-the-art baselines.
LIBS2ML is a library based on scalable second order learning algorithms for solving large-scale problems, i.e., big data problems in machine learning. LIBS2ML has been developed using MEX files, i.e., C++ with MATLAB/Octave interface to take the advantage of both the worlds, i.e., faster learning using C++ and easy I/O using MATLAB. Most of the available libraries are either in MATLAB/Python/R which are very slow and not suitable for large-scale learning, or are in C/C++ which does not have easy ways to take input and display results. So LIBS2ML is completely unique due to its focus on the scalable second order methods, the hot research topic, and being based on MEX files. Thus it provides researchers a comprehensive environment to evaluate their ideas and it also provides machine learning practitioners an effective tool to deal with the large-scale learning problems. LIBS2ML is an open-source, highly efficient, extensible, scalable, readable, portable and easy to use library. The library can be downloaded from the URL: \url{https://github.com/jmdvinodjmd/LIBS2ML}.
Question answering over knowledge base (KB-QA) has recently become a popular research topic in NLP. One popular way to solve the KB-QA problem is to make use of a pipeline of several NLP modules, including entity discovery and linking (EDL) and relation detection. Recent success on KB-QA task usually involves complex network structures with sophisticated heuristics. Inspired by a previous work that builds a strong KB-QA baseline, we propose a simple but general neural model composed of fixed-size ordinally forgetting encoding (FOFE) and deep neural networks, called FOFE-net to solve KB-QA problem at different stages. For evaluation, we use two popular KB-QA datasets, SimpleQuestions and WebQSP, and a newly created dataset, FreebaseQA. The experimental results show that FOFE-net performs well on KB-QA subtasks, entity discovery and linking (EDL) and relation detection, and in turn pushing overall KB-QA system to achieve strong results on all datasets.
Remote Sensing Image Retrieval remains a challenging topic due to the special nature of Remote Sensing Imagery. Such images contain various different semantic objects, which clearly complicates the retrieval task. In this paper, we present an image retrieval pipeline that uses attentive, local convolutional features and aggregates them using the Vector of Locally Aggregated Descriptors (VLAD) to produce a global descriptor. We study various system parameters such as the multiplicative and additive attention mechanisms and descriptor dimensionality. We propose a query expansion method that requires no external inputs. Experiments demonstrate that even without training, the local convolutional features and global representation outperform other systems. After system tuning, we can achieve state-of-the-art or competitive results. Furthermore, we observe that our query expansion method increases overall system performance by about 3%, using only the top-three retrieved images. Finally, we show how dimensionality reduction produces compact descriptors with increased retrieval performance and fast retrieval computation times, e.g. 50% faster than the current systems.
In recent years, we have been faced with a series of natural disasters causing a tremendous amount of financial, environmental, and human losses. The unpredictable nature of natural disasters' behavior makes it hard to have a comprehensive situational awareness (SA) to support disaster management. Using opinion surveys is a traditional approach to analyze public concerns during natural disasters; however, this approach is limited, expensive, and time-consuming. Luckily the advent of social media has provided scholars with an alternative means of analyzing public concerns. Social media enable users (people) to freely communicate their opinions and disperse information regarding current events including natural disasters. This research emphasizes the value of social media analysis and proposes an analytical framework: Twitter Situational Awareness (TwiSA). This framework uses text mining methods including sentiment analysis and topic modeling to create a better SA for disaster preparedness, response, and recovery. TwiSA has also effectively deployed on a large number of tweets and tracks the negative concerns of people during the 2015 South Carolina flood.
The overall objective of 'social' dialogue systems is to support engaging, entertaining, and lengthy conversations on a wide variety of topics, including social chit-chat. Apart from raw dialogue data, user-provided ratings are the most common signal used to train such systems to produce engaging responses. In this paper we show that social dialogue systems can be trained effectively from raw unannotated data. Using a dataset of real conversations collected in the 2017 Alexa Prize challenge, we developed a neural ranker for selecting 'good' system responses to user utterances, i.e. responses which are likely to lead to long and engaging conversations. We show that (1) our neural ranker consistently outperforms several strong baselines when trained to optimise for user ratings; (2) when trained on larger amounts of data and only using conversation length as the objective, the ranker performs better than the one trained using ratings -- ultimately reaching a [email protected] of 0.87. This advance will make data collection for social conversational agents simpler and less expensive in the future.
The handwriting of an individual may vary substantially with factors such as mood, time, space, writing speed, writing medium and tool, writing topic, etc. It becomes challenging to perform automated writer verification/identification on a particular set of handwritten patterns (e.g., speedy handwriting) of a person, especially when the system is trained using a different set of writing patterns (e.g., normal speed) of that same person. However, it would be interesting to experimentally analyze if there exists any implicit characteristic of individuality which is insensitive to high intra-variable handwriting. In this paper, we study some handcrafted features and auto-derived features extracted from intra-variable writing. Here, we work on writer identification/verification from offline Bengali handwriting of high intra-variability. To this end, we use various models mainly based on handcrafted features with SVM (Support Vector Machine) and features auto-derived by the convolutional network. For experimentation, we have generated two handwritten databases from two different sets of 100 writers and enlarged the dataset by a data-augmentation technique. We have obtained some interesting results.
Generating images from natural language is one of the primary applications of recent conditional generative models. Besides testing our ability to model conditional, highly dimensional distributions, text to image synthesis has many exciting and practical applications such as photo editing or computer-aided content creation. Recent progress has been made using Generative Adversarial Networks (GANs). This material starts with a gentle introduction to these topics and discusses the existent state of the art models. Moreover, I propose Wasserstein GAN-CLS, a new model for conditional image generation based on the Wasserstein distance which offers guarantees of stability. Then, I show how the novel loss function of Wasserstein GAN-CLS can be used in a Conditional Progressive Growing GAN. In combination with the proposed loss, the model boosts by 7.07% the best Inception Score (on the Caltech birds dataset) of the models which use only the sentence-level visual semantics. The only model which performs better than the Conditional Wasserstein Progressive Growing GAN is the recently proposed AttnGAN which uses word-level visual semantics as well.
In human interactions, hands are a powerful way of expressing information that, in some cases, can be used as a valid substitute for voice, as it happens in Sign Language. Hand gesture recognition has always been an interesting topic in the areas of computer vision and multimedia. These gestures can be represented as sets of feature vectors that change over time. Recurrent Neural Networks (RNNs) are suited to analyse this type of sets thanks to their ability to model the long term contextual information of temporal sequences. In this paper, a RNN is trained by using as features the angles formed by the finger bones of human hands. The selected features, acquired by a Leap Motion Controller (LMC) sensor, have been chosen because the majority of human gestures produce joint movements that generate truly characteristic corners. A challenging subset composed by a large number of gestures defined by the American Sign Language (ASL) is used to test the proposed solution and the effectiveness of the selected angles. Moreover, the proposed method has been compared to other state of the art works on the SHREC dataset, thus demonstrating its superiority in hand gesture recognition accuracy.