Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Topic": models, code, and papers

Robust Knowledge Discovery via Low-rank Modeling

Sep 28, 2019
Zhengming Ding, Ming Shao

It is always an attractive task to discover knowledge for various learning problems; however, this knowledge discovery and maintenance process usually suffers from noise, incompleteness or knowledge domain mismatch. Thus, robust knowledge discovery by removing the noisy features or samples, complementing incomplete data, and mitigating the distribution difference becomes the key. Along this line of research, low-rank modeling is widely-used to solve these challenges. This survey covers the topic of: (1) robust knowledge recovery, (2) robust knowledge transfer, (3) robust knowledge fusion, centered around several major applications. First of all, we deliver a unified formulation for robust knowledge discovery based on a given dataset. Second, we discuss robust knowledge transfer and fusion given multiple datasets with different knowledge flows, followed by practical challenges, model variations, and remarks. Finally, we highlight future research of robust knowledge discovery for incomplete, unbalance, large-scale data analysis. This would benefit AI community from literature review to future direction.


  Access Paper or Ask Questions

Ordered Sets for Data Analysis

Aug 27, 2019
Sergei O. Kuznetsov

This book dwells on mathematical and algorithmic issues of data analysis based on generality order of descriptions and respective precision. To speak of these topics correctly, we have to go some way getting acquainted with the important notions of relation and order theory. On the one hand, data often have a complex structure with natural order on it. On the other hand, many symbolic methods of data analysis and machine learning allow to compare the obtained classifiers w.r.t. their generality, which is also an order relation. Efficient algorithms are very important in data analysis, especially when one deals with big data, so scalability is a real issue. That is why we analyze the computational complexity of algorithms and problems of data analysis. We start from the basic definitions and facts of algorithmic complexity theory and analyze the complexity of various tools of data analysis we consider. The tools and methods of data analysis, like computing taxonomies, groups of similar objects (concepts and n-clusters), dependencies in data, classification, etc., are illustrated with applications in particular subject domains, from chemoinformatics to text mining and natural language processing.


  Access Paper or Ask Questions

Image Super-Resolution Using a Wavelet-based Generative Adversarial Network

Jul 24, 2019
Qi Zhang, Huafeng Wang, Sichen Yang

In this paper, we consider the problem of super-resolution recons-truction. This is a hot topic because super-resolution reconstruction has a wide range of applications in the medical field, remote sensing monitoring, and criminal investigation. Compared with traditional algorithms, the current super-resolution reconstruction algorithm based on deep learning greatly improves the clarity of reconstructed pictures. Existing work like Super-Resolution Using a Generative Adversarial Network (SRGAN) can effectively restore the texture details of the image. However, experimentally verified that the texture details of the image recovered by the SRGAN are not robust. In order to get super-resolution reconstructed images with richer high-frequency details, we improve the network structure and propose a super-resolution reconstruction algorithm combining wavelet transform and Generative Adversarial Network. The proposed algorithm can efficiently reconstruct high-resolution images with rich global information and local texture details. We have trained our model by PyTorch framework and VOC2012 dataset, and tested it by Set5, Set14, BSD100 and Urban100 test datasets.


  Access Paper or Ask Questions

Fault Diagnosis of Rotary Machines using Deep Convolutional Neural Network with three axis signal input

Jun 06, 2019
Davor Kolar, Dragutin Lisjak, Michal Pajak, Danijel Pavkovic

Recent trends focusing on Industry 4.0 concept and smart manufacturing arise a data-driven fault diagnosis as key topic in condition-based maintenance. Fault diagnosis is considered as an essential task in rotary machinery since possibility of an early detection and diagnosis of the faulty condition can save both time and money. Traditional data-driven techniques of fault diagnosis require signal processing for feature extraction, as they are unable to work with raw signal data, consequently leading to need for expert knowledge and human work. The emergence of deep learning architectures in condition-based maintenance promises to ensure high performance fault diagnosis while lowering necessity for expert knowledge and human work. This paper presents developed technique for deep learning-based data-driven fault diagnosis of rotary machinery. The proposed technique input raw three axis accelerometer signal as high-definition image into deep learning layers which automatically extract signal features, enabling high classification accuracy.


  Access Paper or Ask Questions

Rectified Decision Trees: Towards Interpretability, Compression and Empirical Soundness

Mar 14, 2019
Jiawang Bai, Yiming Li, Jiawei Li, Yong Jiang, Shutao Xia

How to obtain a model with good interpretability and performance has always been an important research topic. In this paper, we propose rectified decision trees (ReDT), a knowledge distillation based decision trees rectification with high interpretability, small model size, and empirical soundness. Specifically, we extend the impurity calculation and the pure ending condition of the classical decision tree to propose a decision tree extension that allows the use of soft labels generated by a well-trained teacher model in training and prediction process. It is worth noting that for the acquisition of soft labels, we propose a new multiple cross-validation based method to reduce the effects of randomness and overfitting. These approaches ensure that ReDT retains excellent interpretability and even achieves fewer nodes than the decision tree in the aspect of compression while having relatively good performance. Besides, in contrast to traditional knowledge distillation, back propagation of the student model is not necessarily required in ReDT, which is an attempt of a new knowledge distillation approach. Extensive experiments are conducted, which demonstrates the superiority of ReDT in interpretability, compression, and empirical soundness.


  Access Paper or Ask Questions

Deep Multi-modal Object Detection and Semantic Segmentation for Autonomous Driving: Datasets, Methods, and Challenges

Feb 21, 2019
Di Feng, Christian Haase-Schuetz, Lars Rosenbaum, Heinz Hertlein, Fabian Duffhauss, Claudius Glaeser, Werner Wiesbeck, Klaus Dietmayer

Recent advancements in the perception for autonomous driving are driven by deep learning. In order to achieve the robust and accurate scene understanding, autonomous vehicles are usually equipped with different sensors (e.g. cameras, LiDARs, Radars), and multiple sensing modalities can be fused to exploit their complementary properties. In this context, many methods have been proposed for deep multi-modal perception problems. However, there is no general guideline for network architecture design, and questions of "what to fuse", "when to fuse", and "how to fuse" remain open. This review paper attempts to systematically summarize methodologies and discuss challenges for deep multi-modal object detection and semantic segmentation in autonomous driving. To this end, we first provide an overview of on-board sensors on test vehicles, open datasets and the background information of object detection and semantic segmentation for the autonomous driving research. We then summarize the fusion methodologies and discuss challenges and open questions. In the appendix, we provide tables that summarize topics and methods. We also provide an interactive online platform to navigate each reference: https://multimodalperception.github.io.


  Access Paper or Ask Questions

Mini-UAV-based Remote Sensing: Techniques, Applications and Prospectives

Dec 20, 2018
Tian-Zhu Xiang, Gui-Song Xia, Liangpei Zhang

The past few decades have witnessed the great progress of unmanned aircraft vehicles (UAVs) in civilian fields, especially in photogrammetry and remote sensing. In contrast with the platforms of manned aircraft and satellite, the UAV platform holds many promising characteristics: flexibility, efficiency, high-spatial/temporal resolution, low cost, easy operation, etc., which make it an effective complement to other remote-sensing platforms and a cost-effective means for remote sensing. Considering the popularity and expansion of UAV-based remote sensing in recent years, this paper provides a systematic survey on the recent advances and future prospectives of UAVs in the remote-sensing community. Specifically, the main challenges and key technologies of remote-sensing data processing based on UAVs are discussed and summarized firstly. Then, we provide an overview of the widespread applications of UAVs in remote sensing. Finally, some prospects for future work are discussed. We hope this paper will provide remote-sensing researchers an overall picture of recent UAV-based remote sensing developments and help guide the further research on this topic.


  Access Paper or Ask Questions

Attentive Relational Networks for Mapping Images to Scene Graphs

Nov 26, 2018
Mengshi Qi, Weijian Li, Zhengyuan Yang, Yunhong Wang, Jiebo Luo

Scene graph generation refers to the task of automatically mapping an image into a semantic structural graph, which requires correctly labeling each extracted objects and their interaction relationships. Despite the recent successes in object detection using deep learning techniques, inferring complex contextual relationships and structured graph representations from visual data remains a challenging topic. In this study, we propose a novel Attentive Relational Network that consists of two key modules with an object detection backbone to approach this problem. The first module is a semantic transformation module used to capture semantic embedded relation features, by translating visual features and linguistic features into a common semantic space. The other module is a graph self-attention module introduced to embed a joint graph representation through assigning various importance weights to neighboring nodes. Finally, accurate scene graphs are produced with the relation inference module by recognizing all entities and the corresponding relations. We evaluate our proposed method on the widely-adopted Visual Genome Dataset, and the results demonstrate the effectiveness and superiority of our model.


  Access Paper or Ask Questions

The RLLChatbot: a solution to the ConvAI challenge

Nov 08, 2018
Nicolas Gontier, Koustuv Sinha, Peter Henderson, Iulian Serban, Michael Noseworthy, Prasanna Parthasarathi, Joelle Pineau

Current conversational systems can follow simple commands and answer basic questions, but they have difficulty maintaining coherent and open-ended conversations about specific topics. Competitions like the Conversational Intelligence (ConvAI) challenge are being organized to push the research development towards that goal. This article presents in detail the RLLChatbot that participated in the 2017 ConvAI challenge. The goal of this research is to better understand how current deep learning and reinforcement learning tools can be used to build a robust yet flexible open domain conversational agent. We provide a thorough description of how a dialog system can be built and trained from mostly public-domain datasets using an ensemble model. The first contribution of this work is a detailed description and analysis of different text generation models in addition to novel message ranking and selection methods. Moreover, a new open-source conversational dataset is presented. Training on this data significantly improves the [email protected] score of the ranking and selection mechanisms compared to our baseline model responsible for selecting the message returned at each interaction.

* 46 pages including references and appendix, 14 figures, 12 tables; Under review for the Dialogue & Discourse journal 

  Access Paper or Ask Questions

A Hybrid Word-Character Approach to Abstractive Summarization

Sep 08, 2018
Chieh-Teng Chang, Chi-Chia Huang, Chih-Yuan Yang, Jane Yung-Jen Hsu

Automatic abstractive text summarization is an important and challenging research topic of natural language processing. Among many widely used languages, the Chinese language has a special property that a Chinese character contains rich information comparable to a word. Existing Chinese text summarization methods, either adopt totally character-based or word-based representations, fail to fully exploit the information carried by both representations. To accurately capture the essence of articles, we propose a hybrid word-character approach (HWC) which preserves the advantages of both word-based and character-based representations. We evaluate the advantage of the proposed HWC approach by applying it to two existing methods, and discover that it generates state-of-the-art performance with a margin of 24 ROUGE points on a widely used dataset LCSTS. In addition, we find an issue contained in the LCSTS dataset and offer a script to remove overlapping pairs (a summary and a short text) to create a clean dataset for the community. The proposed HWC approach also generates the best performance on the new, clean LCSTS dataset.


  Access Paper or Ask Questions

<<
413
414
415
416
417
418
419
420
421
422
423
424
425
>>