Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Topic": models, code, and papers

Sentiment Analysis for Arabic in Social Media Network: A Systematic Mapping Study

Oct 26, 2019
Mohamed Elhag M. Abo, Ram Gopal Raj, Atika Qazi, Abubakar Zakari

With the expansion in tenders on the Internet and social media, Arabic Sentiment Analysis (ASA) has assumed a significant position in the field of text mining study and has since remained used to explore the sentiments of users about services, various products or topics conversed over the Internet. This mapping paper designs to comprehensively investigate the papers demographics, fertility, and directions of the ASA research domain. Furthermore, plans to analyze current ASA techniques and find movements in the research. This paper describes a systematic mapping study (SMS) of 51 primary selected studies (PSS) is handled with the approval of an evidence-based systematic method to ensure handling of all related papers. The analyzed results showed the increase of both the ASA research area and numbers of publications per year since 2015. Three main research facets were found, i.e. validation, solution, and evaluation research, with solution research becoming more treatment than another research type. Therefore numerous contribution facets were singled out. In totality, the general demographics of the ASA research field were highlighted and discussed

* 34 pages, 10 figures, Articles, 11 tables 

  Access Paper or Ask Questions

Multivariate Forecasting Evaluation: On Sensitive and Strictly Proper Scoring Rules

Oct 16, 2019
Florian Ziel, Kevin Berk

In recent years, probabilistic forecasting is an emerging topic, which is why there is a growing need of suitable methods for the evaluation of multivariate predictions. We analyze the sensitivity of the most common scoring rules, especially regarding quality of the forecasted dependency structures. Additionally, we propose scoring rules based on the copula, which uniquely describes the dependency structure for every probability distribution with continuous marginal distributions. Efficient estimation of the considered scoring rules and evaluation methods such as the Diebold-Mariano test are discussed. In detailed simulation studies, we compare the performance of the renowned scoring rules and the ones we propose. Besides extended synthetic studies based on recently published results we also consider a real data example. We find that the energy score, which is probably the most widely used multivariate scoring rule, performs comparably well in detecting forecast errors, also regarding dependencies. This contradicts other studies. The results also show that a proposed copula score provides very strong distinction between models with correct and incorrect dependency structure. We close with a comprehensive discussion on the proposed methodology.

  Access Paper or Ask Questions

CONet: A Cognitive Ocean Network

Jan 09, 2019
Huimin Lu, Dong Wang, Yujie Li, Jianru Li, Xin Li, Hyoungseop Kim, Seiichi Serikawa, Iztok Humar

The scientific and technological revolution of the Internet of Things has begun in the area of oceanography. Historically, humans have observed the ocean from an external viewpoint in order to study it. In recent years, however, changes have occurred in the ocean, and laboratories have been built on the seafloor. Approximately 70.8% of the Earth's surface is covered by oceans and rivers. The Ocean of Things is expected to be important for disaster prevention, ocean-resource exploration, and underwater environmental monitoring. Unlike traditional wireless sensor networks, the Ocean Network has its own unique features, such as low reliability and narrow bandwidth. These features will be great challenges for the Ocean Network. Furthermore, the integration of the Ocean Network with artificial intelligence has become a topic of increasing interest for oceanology researchers. The Cognitive Ocean Network (CONet) will become the mainstream of future ocean science and engineering developments. In this article, we define the CONet. The contributions of the paper are as follows: (1) a CONet architecture is proposed and described in detail; (2) important and useful demonstration applications of the CONet are proposed; and (3) future trends in CONet research are presented.

* Accepted by IEEE Wireless Communications 

  Access Paper or Ask Questions

Towards a Theoretical Understanding of Hashing-Based Neural Nets

Dec 26, 2018
Yibo Lin, Zhao Song, Lin F. Yang

Parameter reduction has been an important topic in deep learning due to the ever-increasing size of deep neural network models and the need to train and run them on resource limited machines. Despite many efforts in this area, there were no rigorous theoretical guarantees on why existing neural net compression methods should work. In this paper, we provide provable guarantees on some hashing-based parameter reduction methods in neural nets. First, we introduce a neural net compression scheme based on random linear sketching (which is usually implemented efficiently via hashing), and show that the sketched (smaller) network is able to approximate the original network on all input data coming from any smooth and well-conditioned low-dimensional manifold. The sketched network can also be trained directly via back-propagation. Next, we study the previously proposed HashedNets architecture and show that the optimization landscape of one-hidden-layer HashedNets has a local strong convexity property similar to a normal fully connected neural network. We complement our theoretical results with empirical verifications.

* AISTATS 2019 

  Access Paper or Ask Questions

PAC Learning Guarantees Under Covariate Shift

Dec 16, 2018
Artidoro Pagnoni, Stefan Gramatovici, Samuel Liu

We consider the Domain Adaptation problem, also known as the covariate shift problem, where the distributions that generate the training and test data differ while retaining the same labeling function. This problem occurs across a large range of practical applications, and is related to the more general challenge of transfer learning. Most recent work on the topic focuses on optimization techniques that are specific to an algorithm or practical use case rather than a more general approach. The sparse literature attempting to provide general bounds seems to suggest that efficient learning even under strong assumptions is not possible for covariate shift. Our main contribution is to recontextualize these results by showing that any Probably Approximately Correct (PAC) learnable concept class is still PAC learnable under covariate shift conditions with only a polynomial increase in the number of training samples. This approach essentially demonstrates that the Domain Adaptation learning problem is as hard as the underlying PAC learning problem, provided some conditions over the training and test distributions. We also present bounds for the rejection sampling algorithm, justifying it as a solution to the Domain Adaptation problem in certain scenarios.

  Access Paper or Ask Questions

SMIT: Stochastic Multi-Label Image-to-Image Translation

Dec 10, 2018
Andrés Romero, Pablo Arbeláez, Luc Van Gool, Radu Timofte

Cross-domain mapping has been a very active topic in recent years. Given one image, its main purpose is to translate it to the desired target domain, or multiple domains in the case of multiple labels. This problem is highly challenging due to three main reasons: (i) unpaired datasets, (ii) multiple attributes, and (iii) the multimodality associated with the translation. Most of the existing state-of-the-art has focused only on two reasons, i.e. producing disentangled representations from unpaired datasets in a one-to-one domain translation or producing multiple unimodal attributes from unpaired datasets. In this work, we propose a joint framework of diversity and multi-mapping image-to-image translations, using a single generator to conditionally produce countless and unique fake images that hold the underlying characteristics of the source image. Extensive experiments over different datasets demonstrate the effectiveness of our proposed approach with comparisons to the state-of-the-art in both multi-label and multimodal problems. Additionally, our method is able to generalize under different scenarios: continuous style interpolation, continuous label interpolation, and multi-label mapping.

  Access Paper or Ask Questions

Deep Comparison: Relation Columns for Few-Shot Learning

Nov 20, 2018
Xueting Zhang, Flood Sung, Yuting Qiang, Yongxin Yang, Timothy M. Hospedales

Few-shot deep learning is a topical challenge area for scaling visual recognition to open-ended growth in the space of categories to recognise. A promising line work towards realising this vision is deep networks that learn to match queries with stored training images. However, methods in this paradigm usually train a deep embedding followed by a single linear classifier. Our insight is that effective general-purpose matching requires discrimination with regards to features at multiple abstraction levels. We therefore propose a new framework termed Deep Comparison Network(DCN) that decomposes embedding learning into a sequence of modules, and pairs each with a relation module. The relation modules compute a non-linear metric to score the match using the corresponding embedding module's representation. To ensure that all embedding module's features are used, the relation modules are deeply supervised. Finally generalisation is further improved by a learned noise regulariser. The resulting network achieves state of the art performance on both miniImageNet and tieredImageNet, while retaining the appealing simplicity and efficiency of deep metric learning approaches.

* 10 pages, 5 figures 

  Access Paper or Ask Questions

Recent advances and opportunities in scene classification of aerial images with deep models

Jun 04, 2018
Fan Hu, Gui-Song Xia, Wen Yang, Liangpei Zhang

Scene classification is a fundamental task in interpretation of remote sensing images, and has become an active research topic in remote sensing community due to its important role in a wide range of applications. Over the past years, tremendous efforts have been made for developing powerful approaches for scene classification of remote sensing images, evolving from the traditional bag-of-visual-words model to the new generation deep convolutional neural networks (CNNs). The deep CNN based methods have exhibited remarkable breakthrough on performance, dramatically outperforming previous methods which strongly rely on hand-crafted features. However, performance with deep CNNs has gradually plateaued on existing public scene datasets, due to the notable drawbacks of these datasets, such as the small scale and low-diversity of training samples. Therefore, to promote the development of new methods and move the scene classification task a step further, we deeply discuss the existing problems in scene classification task, and accordingly present three open directions. We believe these potential directions will be instructive for the researchers in this field.

* IGARSS'18 conference paper 

  Access Paper or Ask Questions

Indoor Scene Understanding in 2.5/3D: A Survey

Mar 09, 2018
Muzammal Naseer, Salman H Khan, Fatih Porikli

With the availability of low-cost and compact 2.5/3D visual sensing devices, computer vision community is experiencing a growing interest in visual scene understanding. This survey paper provides a comprehensive background to this research topic. We begin with a historical perspective, followed by popular 3D data representations and a comparative analysis of available datasets. Before delving into the application specific details, this survey provides a succinct introduction to the core technologies that are the underlying methods extensively used in the literature. Afterwards, we review the developed techniques according to a taxonomy based on the scene understanding tasks. This covers holistic indoor scene understanding as well as subtasks such as scene classification, object detection, pose estimation, semantic segmentation, 3D reconstruction, saliency detection, physics-based reasoning and affordance prediction. Later on, we summarize the performance metrics used for evaluation in different tasks and a quantitative comparison among the recent state-of-the-art techniques. We conclude this review with the current challenges and an outlook towards the open research problems requiring further investigation.

  Access Paper or Ask Questions

Deep Reinforcement Learning: An Overview

Sep 15, 2017
Yuxi Li

We give an overview of recent exciting achievements of deep reinforcement learning (RL). We discuss six core elements, six important mechanisms, and twelve applications. We start with background of machine learning, deep learning and reinforcement learning. Next we discuss core RL elements, including value function, in particular, Deep Q-Network (DQN), policy, reward, model, planning, and exploration. After that, we discuss important mechanisms for RL, including attention and memory, unsupervised learning, transfer learning, multi-agent RL, hierarchical RL, and learning to learn. Then we discuss various applications of RL, including games, in particular, AlphaGo, robotics, natural language processing, including dialogue systems, machine translation, and text generation, computer vision, neural architecture design, business management, finance, healthcare, Industry 4.0, smart grid, intelligent transportation systems, and computer systems. We mention topics not reviewed yet, and list a collection of RL resources. After presenting a brief summary, we close with discussions.

  Access Paper or Ask Questions