Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Topic": models, code, and papers

Latent Topic Conversational Models

Sep 19, 2018
Tsung-Hsien Wen, Minh-Thang Luong

Latent variable models have been a preferred choice in conversational modeling compared to sequence-to-sequence (seq2seq) models which tend to generate generic and repetitive responses. Despite so, training latent variable models remains to be difficult. In this paper, we propose Latent Topic Conversational Model (LTCM) which augments seq2seq with a neural latent topic component to better guide response generation and make training easier. The neural topic component encodes information from the source sentence to build a global "topic" distribution over words, which is then consulted by the seq2seq model at each generation step. We study in details how the latent representation is learnt in both the vanilla model and LTCM. Our extensive experiments contribute to better understanding and training of conditional latent models for languages. Our results show that by sampling from the learnt latent representations, LTCM can generate diverse and interesting responses. In a subjective human evaluation, the judges also confirm that LTCM is the overall preferred option.


  Access Paper or Ask Questions

Beyond Plain Toxic: Detection of Inappropriate Statements on Flammable Topics for the Russian Language

Mar 04, 2022
Nikolay Babakov, Varvara Logacheva, Alexander Panchenko

Toxicity on the Internet, such as hate speech, offenses towards particular users or groups of people, or the use of obscene words, is an acknowledged problem. However, there also exist other types of inappropriate messages which are usually not viewed as toxic, e.g. as they do not contain explicit offences. Such messages can contain covered toxicity or generalizations, incite harmful actions (crime, suicide, drug use), provoke "heated" discussions. Such messages are often related to particular sensitive topics, e.g. on politics, sexual minorities, social injustice which more often than other topics, e.g. cars or computing, yield toxic emotional reactions. At the same time, clearly not all messages within such flammable topics are inappropriate. Towards this end, in this work, we present two text collections labelled according to binary notion of inapropriateness and a multinomial notion of sensitive topic. Assuming that the notion of inappropriateness is common among people of the same culture, we base our approach on human intuitive understanding of what is not acceptable and harmful. To objectivise the notion of inappropriateness, we define it in a data-driven way though crowdsourcing. Namely we run a large-scale annotation study asking workers if a given chatbot textual statement could harm reputation of a company created it. Acceptably high values of inter-annotator agreement suggest that the notion of inappropriateness exists and can be uniformly understood by different people. To define the notion of sensitive topics in an objective way we use on guidelines suggested commonly by specialists of legal and PR department of a large public company as potentially harmful.

* arXiv admin note: text overlap with arXiv:2103.05345 

  Access Paper or Ask Questions

Topic Modeling with Contextualized Word Representation Clusters

Oct 23, 2020
Laure Thompson, David Mimno

Clustering token-level contextualized word representations produces output that shares many similarities with topic models for English text collections. Unlike clusterings of vocabulary-level word embeddings, the resulting models more naturally capture polysemy and can be used as a way of organizing documents. We evaluate token clusterings trained from several different output layers of popular contextualized language models. We find that BERT and GPT-2 produce high quality clusterings, but RoBERTa does not. These cluster models are simple, reliable, and can perform as well as, if not better than, LDA topic models, maintaining high topic quality even when the number of topics is large relative to the size of the local collection.


  Access Paper or Ask Questions

Emerging App Issue Identification via Online Joint Sentiment-Topic Tracing

Aug 23, 2020
Cuiyun Gao, Jichuan Zeng, Zhiyuan Wen, David Lo, Xin Xia, Irwin King, Michael R. Lyu

Millions of mobile apps are available in app stores, such as Apple's App Store and Google Play. For a mobile app, it would be increasingly challenging to stand out from the enormous competitors and become prevalent among users. Good user experience and well-designed functionalities are the keys to a successful app. To achieve this, popular apps usually schedule their updates frequently. If we can capture the critical app issues faced by users in a timely and accurate manner, developers can make timely updates, and good user experience can be ensured. There exist prior studies on analyzing reviews for detecting emerging app issues. These studies are usually based on topic modeling or clustering techniques. However, the short-length characteristics and sentiment of user reviews have not been considered. In this paper, we propose a novel emerging issue detection approach named MERIT to take into consideration the two aforementioned characteristics. Specifically, we propose an Adaptive Online Biterm Sentiment-Topic (AOBST) model for jointly modeling topics and corresponding sentiments that takes into consideration app versions. Based on the AOBST model, we infer the topics negatively reflected in user reviews for one app version, and automatically interpret the meaning of the topics with most relevant phrases and sentences. Experiments on popular apps from Google Play and Apple's App Store demonstrate the effectiveness of MERIT in identifying emerging app issues, improving the state-of-the-art method by 22.3% in terms of F1-score. In terms of efficiency, MERIT can return results within acceptable time.


  Access Paper or Ask Questions

Public sentiment analysis and topic modeling regarding COVID-19 vaccines on the Reddit social media platform: A call to action for strengthening vaccine confidence

Aug 22, 2021
Chad A Melton, Olufunto A Olusanya, Nariman Ammar, Arash Shaban-Nejad

The COVID-19 pandemic fueled one of the most rapid vaccine developments in history. However, misinformation spread through online social media often leads to negative vaccine sentiment and hesitancy. To investigate COVID-19 vaccine-related discussion in social media, we conducted a sentiment analysis and Latent Dirichlet Allocation topic modeling on textual data collected from 13 Reddit communities focusing on the COVID-19 vaccine from Dec 1, 2020, to May 15, 2021. Data were aggregated and analyzed by month to detect changes in any sentiment and latent topics. ty analysis suggested these communities expressed more positive sentiment than negative regarding the vaccine-related discussions and has remained static over time. Topic modeling revealed community members mainly focused on side effects rather than outlandish conspiracy theories. Covid-19 vaccine-related content from 13 subreddits show that the sentiments expressed in these communities are overall more positive than negative and have not meaningfully changed since December 2020. Keywords indicating vaccine hesitancy were detected throughout the LDA topic modeling. Public sentiment and topic modeling analysis regarding vaccines could facilitate the implementation of appropriate messaging, digital interventions, and new policies to promote vaccine confidence.

* Journal of Infection and Public Health, Available online 14 August 2021 
* 8 pages, 4 Figures, 2 Tables 

  Access Paper or Ask Questions

Factorized Multi-Modal Topic Model

Oct 16, 2012
Seppo Virtanen, Yangqing Jia, Arto Klami, Trevor Darrell

Multi-modal data collections, such as corpora of paired images and text snippets, require analysis methods beyond single-view component and topic models. For continuous observations the current dominant approach is based on extensions of canonical correlation analysis, factorizing the variation into components shared by the different modalities and those private to each of them. For count data, multiple variants of topic models attempting to tie the modalities together have been presented. All of these, however, lack the ability to learn components private to one modality, and consequently will try to force dependencies even between minimally correlating modalities. In this work we combine the two approaches by presenting a novel HDP-based topic model that automatically learns both shared and private topics. The model is shown to be especially useful for querying the contents of one domain given samples of the other.

* Appears in Proceedings of the Twenty-Eighth Conference on Uncertainty in Artificial Intelligence (UAI2012) 

  Access Paper or Ask Questions

Ontology-Grounded Topic Modeling for Climate Science Research

Jul 31, 2018
Jennifer Sleeman, Tim Finin, Milton Halem

In scientific disciplines where research findings have a strong impact on society, reducing the amount of time it takes to understand, synthesize and exploit the research is invaluable. Topic modeling is an effective technique for summarizing a collection of documents to find the main themes among them and to classify other documents that have a similar mixture of co-occurring words. We show how grounding a topic model with an ontology, extracted from a glossary of important domain phrases, improves the topics generated and makes them easier to understand. We apply and evaluate this method to the climate science domain. The result improves the topics generated and supports faster research understanding, discovery of social networks among researchers, and automatic ontology generation.

* To appear in Proc. of Semantic Web for Social Good Workshop of the Int. Semantic Web Conf., Oct 2018 and published as part of the book "Emerging Topics in Semantic Technologies. ISWC 2018 Satellite Events", E. Demidova, A.J. Zaveri, E. Simperl (Eds.), ISBN: 978-3-89838-736-1, 2018, AKA Verlag Berlin, (edited authors) 

  Access Paper or Ask Questions

Gene Expression based Survival Prediction for Cancer Patients: A Topic Modeling Approach

Mar 25, 2019
Luke Kumar, Russell Greiner

Cancer is one of the leading cause of death, worldwide. Many believe that genomic data will enable us to better predict the survival time of these patients, which will lead to better, more personalized treatment options and patient care. As standard survival prediction models have a hard time coping with the high-dimensionality of such gene expression (GE) data, many projects use some dimensionality reduction techniques to overcome this hurdle. We introduce a novel methodology, inspired by topic modeling from the natural language domain, to derive expressive features from the high-dimensional GE data. There, a document is represented as a mixture over a relatively small number of topics, where each topic corresponds to a distribution over the words; here, to accommodate the heterogeneity of a patient's cancer, we represent each patient (~document) as a mixture over cancer-topics, where each cancer-topic is a mixture over GE values (~words). This required some extensions to the standard LDA model eg: to accommodate the "real-valued" expression values - leading to our novel "discretized" Latent Dirichlet Allocation (dLDA) procedure. We initially focus on the METABRIC dataset, which describes breast cancer patients using the r=49,576 GE values, from microarrays. Our results show that our approach provides survival estimates that are more accurate than standard models, in terms of the standard Concordance measure. We then validate this approach by running it on the Pan-kidney (KIPAN) dataset, over r=15,529 GE values - here using the mRNAseq modality - and find that it again achieves excellent results. In both cases, we also show that the resulting model is calibrated, using the recent "D-calibrated" measure. These successes, in two different cancer types and expression modalities, demonstrates the generality, and the effectiveness, of this approach.


  Access Paper or Ask Questions

Unsupervised Topic Modeling Approaches to Decision Summarization in Spoken Meetings

Jun 24, 2016
Lu Wang, Claire Cardie

We present a token-level decision summarization framework that utilizes the latent topic structures of utterances to identify "summary-worthy" words. Concretely, a series of unsupervised topic models is explored and experimental results show that fine-grained topic models, which discover topics at the utterance-level rather than the document-level, can better identify the gist of the decision-making process. Moreover, our proposed token-level summarization approach, which is able to remove redundancies within utterances, outperforms existing utterance ranking based summarization methods. Finally, context information is also investigated to add additional relevant information to the summary.

* SIGDIAL 2012 

  Access Paper or Ask Questions

Zero-Shot Stance Detection: A Dataset and Model using Generalized Topic Representations

Oct 07, 2020
Emily Allaway, Kathleen McKeown

Stance detection is an important component of understanding hidden influences in everyday life. Since there are thousands of potential topics to take a stance on, most with little to no training data, we focus on zero-shot stance detection: classifying stance from no training examples. In this paper, we present a new dataset for zero-shot stance detection that captures a wider range of topics and lexical variation than in previous datasets. Additionally, we propose a new model for stance detection that implicitly captures relationships between topics using generalized topic representations and show that this model improves performance on a number of challenging linguistic phenomena.

* EMNLP 2020 

  Access Paper or Ask Questions

<<
35
36
37
38
39
40
41
42
43
44
45
46
47
>>