Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Topic": models, code, and papers

Adaptive Mean-Residue Loss for Robust Facial Age Estimation

Mar 31, 2022
Ziyuan Zhao, Peisheng Qian, Yubo Hou, Zeng Zeng

Automated facial age estimation has diverse real-world applications in multimedia analysis, e.g., video surveillance, and human-computer interaction. However, due to the randomness and ambiguity of the aging process, age assessment is challenging. Most research work over the topic regards the task as one of age regression, classification, and ranking problems, and cannot well leverage age distribution in representing labels with age ambiguity. In this work, we propose a simple yet effective loss function for robust facial age estimation via distribution learning, i.e., adaptive mean-residue loss, in which, the mean loss penalizes the difference between the estimated age distribution's mean and the ground-truth age, whereas the residue loss penalizes the entropy of age probability out of dynamic top-K in the distribution. Experimental results in the datasets FG-NET and CLAP2016 have validated the effectiveness of the proposed loss. Our code is available at https://github.com/jacobzhaoziyuan/AMR-Loss.

* Accepted by IEEE International Conference on Multimedia and Expo (ICME 2022) 

  Access Paper or Ask Questions

ArabGend: Gender Analysis and Inference on Arabic Twitter

Mar 01, 2022
Hamdy Mubarak, Shammur Absar Chowdhury, Firoj Alam

Gender analysis of Twitter can reveal important socio-cultural differences between male and female users. There has been a significant effort to analyze and automatically infer gender in the past for most widely spoken languages' content, however, to our knowledge very limited work has been done for Arabic. In this paper, we perform an extensive analysis of differences between male and female users on the Arabic Twitter-sphere. We study differences in user engagement, topics of interest, and the gender gap in professions. Along with gender analysis, we also propose a method to infer gender by utilizing usernames, profile pictures, tweets, and networks of friends. In order to do so, we manually annotated gender and locations for ~166K Twitter accounts associated with ~92K user location, which we plan to make publicly available at http://anonymous.com. Our proposed gender inference method achieve an F1 score of 82.1%, which is 47.3% higher than majority baseline. In addition, we also developed a demo and made it publicly available.

* Gender Analysis Dataset, Demography, Arabic Twitter Accounts, Arabic Social Media Content 

  Access Paper or Ask Questions

Towards Verifiable Federated Learning

Feb 15, 2022
Yanci Zhang, Han Yu

Federated learning (FL) is an emerging paradigm of collaborative machine learning that preserves user privacy while building powerful models. Nevertheless, due to the nature of open participation by self-interested entities, it needs to guard against potential misbehaviours by legitimate FL participants. FL verification techniques are promising solutions for this problem. They have been shown to effectively enhance the reliability of FL networks and help build trust among participants. Verifiable federated learning has become an emerging topic of research that has attracted significant interest from the academia and the industry alike. Currently, there is no comprehensive survey on the field of verifiable federated learning, which is interdisciplinary in nature and can be challenging for researchers to enter into. In this paper, we bridge this gap by reviewing works focusing on verifiable FL. We propose a novel taxonomy for verifiable FL covering both centralised and decentralised FL settings, summarise the commonly adopted performance evaluation approaches, and discuss promising directions towards a versatile verifiable FL framework.


  Access Paper or Ask Questions

Data-to-Value: An Evaluation-First Methodology for Natural Language Projects

Jan 19, 2022
Jochen L. Leidner

Big data, i.e. collecting, storing and processing of data at scale, has recently been possible due to the arrival of clusters of commodity computers powered by application-level distributed parallel operating systems like HDFS/Hadoop/Spark, and such infrastructures have revolutionized data mining at scale. For data mining project to succeed more consistently, some methodologies were developed (e.g. CRISP-DM, SEMMA, KDD), but these do not account for (1) very large scales of processing, (2) dealing with textual (unstructured) data (i.e. Natural Language Processing (NLP, "text analytics"), and (3) non-technical considerations (e.g. legal, ethical, project managerial aspects). To address these shortcomings, a new methodology, called "Data to Value" (D2V), is introduced, which is guided by a detailed catalog of questions in order to avoid a disconnect of big data text analytics project team with the topic when facing rather abstract box-and-arrow diagrams commonly associated with methodologies.

* 9 pages, 6 figures, 4 tables 

  Access Paper or Ask Questions

Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers

Jan 19, 2022
Max Wolff, Stuart Wolff

Feature preference in Convolutional Neural Network (CNN) image classifiers is integral to their decision making process, and while the topic has been well studied, it is still not understood at a fundamental level. We test a range of task relevant feature attributes (including shape, texture, and color) with varying degrees of signal and noise in highly controlled CNN image classification experiments using synthetic datasets to determine feature preferences. We find that CNNs will prefer features with stronger signal strength and lower noise irrespective of whether the feature is texture, shape, or color. This provides guidance for a predictive model for task relevant feature preferences, demonstrates pathways for bias in machine models that can be avoided with careful controls on experimental setup, and suggests that comparisons between how humans and machines prefer task relevant features in vision classification tasks should be revisited. Code to reproduce experiments in this paper can be found at \url{https://github.com/mwolff31/signal_preference}.

* Accepted at SVRHM 2021 

  Access Paper or Ask Questions

Noninvasive Fetal Electrocardiography: Models, Technologies and Algorithms

Dec 24, 2021
Reza Sameni

The fetal electrocardiogram (fECG) was first recorded from the maternal abdominal surface in the early 1900s. During the past fifty years, the most advanced electronics technologies and signal processing algorithms have been used to convert noninvasive fetal electrocardiography into a reliable technology for fetal cardiac monitoring. In this chapter, the major signal processing techniques, which have been developed for the modeling, extraction and analysis of the fECG from noninvasive maternal abdominal recordings are reviewed and compared with one another in detail. The major topics of the chapter include: 1) the electrophysiology of the fECG from the signal processing viewpoint, 2) the mathematical model of the maternal volume conduction media and the waveform models of the fECG acquired from body surface leads, 3) the signal acquisition requirements, 4) model-based techniques for fECG noise and interference cancellation, including adaptive filters and semi-blind source separation techniques, and 5) recent algorithmic advances for fetal motion tracking and online fECG extraction from few number of channels.

* In Innovative Technologies and Signal Processing in Perinatal Medicine (pp. 99-146). Springer International Publishing (2020) 

  Access Paper or Ask Questions

Explainable AI (XAI): A Systematic Meta-Survey of Current Challenges and Future Opportunities

Nov 11, 2021
Waddah Saeed, Christian Omlin

The past decade has seen significant progress in artificial intelligence (AI), which has resulted in algorithms being adopted for resolving a variety of problems. However, this success has been met by increasing model complexity and employing black-box AI models that lack transparency. In response to this need, Explainable AI (XAI) has been proposed to make AI more transparent and thus advance the adoption of AI in critical domains. Although there are several reviews of XAI topics in the literature that identified challenges and potential research directions in XAI, these challenges and research directions are scattered. This study, hence, presents a systematic meta-survey for challenges and future research directions in XAI organized in two themes: (1) general challenges and research directions in XAI and (2) challenges and research directions in XAI based on machine learning life cycle's phases: design, development, and deployment. We believe that our meta-survey contributes to XAI literature by providing a guide for future exploration in the XAI area.

* 29 pages, 2 figures, 4 tables 

  Access Paper or Ask Questions

Benchmark Problems for CEC2021 Competition on Evolutionary Transfer Multiobjectve Optimization

Oct 15, 2021
Songbai Liu, Qiuzhen Lin, Kay Chen Tan, Qing Li

Evolutionary transfer multiobjective optimization (ETMO) has been becoming a hot research topic in the field of evolutionary computation, which is based on the fact that knowledge learning and transfer across the related optimization exercises can improve the efficiency of others. Besides, the potential for transfer optimization is deemed invaluable from the standpoint of human-like problem-solving capabilities where knowledge gather and reuse are instinctive. To promote the research on ETMO, benchmark problems are of great importance to ETMO algorithm analysis, which helps designers or practitioners to understand the merit and demerit better of ETMO algorithms. Therefore, a total number of 40 benchmark functions are proposed in this report, covering diverse types and properties in the case of knowledge transfer, such as various formulation models, various PS geometries and PF shapes, large-scale of variables, dynamically changed environment, and so on. All the benchmark functions have been implemented in JAVA code, which can be downloaded on the following website: https://github.com/songbai-liu/etmo.

* 20 pages, 1 figure, technical report for competition 

  Access Paper or Ask Questions

Model Based Control of Soft Robots: A Survey of the State of the Art and Open Challenges

Oct 04, 2021
Cosimo Della Santina, Christian Duriez, Daniela Rus

Continuum soft robots are mechanical systems entirely made of continuously deformable elements. This design solution aims to bring robots closer to invertebrate animals and soft appendices of vertebrate animals (e.g., an elephant's trunk, a monkey's tail). This work aims to introduce the control theorist perspective to this novel development in robotics. We aim to remove the barriers to entry into this field by presenting existing results and future challenges using a unified language and within a coherent framework. Indeed, the main difficulty in entering this field is the wide variability of terminology and scientific backgrounds, making it quite hard to acquire a comprehensive view on the topic. Another limiting factor is that it is not obvious where to draw a clear line between the limitations imposed by the technology not being mature yet and the challenges intrinsic to this class of robots. In this work, we argue that the intrinsic effects are the continuum or multi-body dynamics, the presence of a non-negligible elastic potential field, and the variability in sensing and actuation strategies.

* 69 pages, 13 figures 

  Access Paper or Ask Questions

The emojification of sentiment on social media: Collection and analysis of a longitudinal Twitter sentiment dataset

Aug 31, 2021
Wenjie Yin, Rabab Alkhalifa, Arkaitz Zubiaga

Social media, as a means for computer-mediated communication, has been extensively used to study the sentiment expressed by users around events or topics. There is however a gap in the longitudinal study of how sentiment evolved in social media over the years. To fill this gap, we develop TM-Senti, a new large-scale, distantly supervised Twitter sentiment dataset with over 184 million tweets and covering a time period of over seven years. We describe and assess our methodology to put together a large-scale, emoticon- and emoji-based labelled sentiment analysis dataset, along with an analysis of the resulting dataset. Our analysis highlights interesting temporal changes, among others in the increasing use of emojis over emoticons. We publicly release the dataset for further research in tasks including sentiment analysis and text classification of tweets. The dataset can be fully rehydrated including tweet metadata and without missing tweets thanks to the archive of tweets publicly available on the Internet Archive, which the dataset is based on.


  Access Paper or Ask Questions

<<
354
355
356
357
358
359
360
361
362
363
364
365
366
>>