Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Topic": models, code, and papers

Exploiting Explainable Metrics for Augmented SGD

Mar 31, 2022
Mahdi S. Hosseini, Mathieu Tuli, Konstantinos N. Plataniotis

Explaining the generalization characteristics of deep learning is an emerging topic in advanced machine learning. There are several unanswered questions about how learning under stochastic optimization really works and why certain strategies are better than others. In this paper, we address the following question: \textit{can we probe intermediate layers of a deep neural network to identify and quantify the learning quality of each layer?} With this question in mind, we propose new explainability metrics that measure the redundant information in a network's layers using a low-rank factorization framework and quantify a complexity measure that is highly correlated with the generalization performance of a given optimizer, network, and dataset. We subsequently exploit these metrics to augment the Stochastic Gradient Descent (SGD) optimizer by adaptively adjusting the learning rate in each layer to improve in generalization performance. Our augmented SGD -- dubbed RMSGD -- introduces minimal computational overhead compared to SOTA methods and outperforms them by exhibiting strong generalization characteristics across application, architecture, and dataset.

* Accepted in IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR2022) 

  Access Paper or Ask Questions

Fusion of Sentiment and Asset Price Predictions for Portfolio Optimization

Mar 10, 2022
Mufhumudzi Muthivhi, Terence L. van Zyl

The fusion of public sentiment data in the form of text with stock price prediction is a topic of increasing interest within the financial community. However, the research literature seldom explores the application of investor sentiment in the Portfolio Selection problem. This paper aims to unpack and develop an enhanced understanding of the sentiment aware portfolio selection problem. To this end, the study uses a Semantic Attention Model to predict sentiment towards an asset. We select the optimal portfolio through a sentiment-aware Long Short Term Memory (LSTM) recurrent neural network for price prediction and a mean-variance strategy. Our sentiment portfolio strategies achieved on average a significant increase in revenue above the non-sentiment aware models. However, the results show that our strategy does not outperform traditional portfolio allocation strategies from a stability perspective. We argue that an improved fusion of sentiment prediction with a combination of price prediction and portfolio optimization leads to an enhanced portfolio selection strategy.

* 9 pages, 4 figures, 6 tables 

  Access Paper or Ask Questions

NewsPod: Automatic and Interactive News Podcasts

Feb 15, 2022
Philippe Laban, Elicia Ye, Srujay Korlakunta, John Canny, Marti A. Hearst

News podcasts are a popular medium to stay informed and dive deep into news topics. Today, most podcasts are handcrafted by professionals. In this work, we advance the state-of-the-art in automatically generated podcasts, making use of recent advances in natural language processing and text-to-speech technology. We present NewsPod, an automatically generated, interactive news podcast. The podcast is divided into segments, each centered on a news event, with each segment structured as a Question and Answer conversation, whose goal is to engage the listener. A key aspect of the design is the use of distinct voices for each role (questioner, responder), to better simulate a conversation. Another novel aspect of NewsPod allows listeners to interact with the podcast by asking their own questions and receiving automatically generated answers. We validate the soundness of this system design through two usability studies, focused on evaluating the narrative style and interactions with the podcast, respectively. We find that NewsPod is preferred over a baseline by participants, with 80% claiming they would use the system in the future.

* Accepted at IUI 2022, 16 pages, 10 figures 

  Access Paper or Ask Questions

Identifying critical nodes in complex networks by graph representation learning

Jan 20, 2022
Enyu Yu, Duanbing Chen, Yan Fu, Yuanyuan Xu

Because of its wide application, critical nodes identification has become an important research topic at the micro level of network science. Influence maximization is one of the main problems in critical nodes mining and is usually handled with heuristics. In this paper, a deep graph learning framework IMGNN is proposed and the corresponding training sample generation scheme is designed. The framework takes centralities of nodes in a network as input and the probability that nodes in the optimal initial spreaders as output. By training on a large number of small synthetic networks, IMGNN is more efficient than human-based heuristics in minimizing the size of initial spreaders under the fixed infection scale. The experimental results on one synthetic and five real networks show that, compared with traditional non-iterative node ranking algorithms, IMGNN has the smallest proportion of initial spreaders under different infection probabilities when the final infection scale is fixed. And the reordered version of IMGNN outperforms all the latest critical nodes mining algorithms.

  Access Paper or Ask Questions

Automatic Evaluation and Moderation of Open-domain Dialogue Systems

Nov 20, 2021
Chen Zhang, João Sadoc, Luis Fernando D'Haro, Rafael Banchs, Alexander Rudnicky

The development of Open-Domain Dialogue Systems (ODS)is a trending topic due to the large number of research challenges, large societal and business impact, and advances in the underlying technology. However, the development of these kinds of systems requires two important characteristics:1) automatic evaluation mechanisms that show high correlations with human judgements across multiple dialogue evaluation aspects (with explainable features for providing constructive and explicit feedback on the quality of generative models' responses for quick development and deployment)and 2) mechanisms that can help to control chatbot responses,while avoiding toxicity and employing intelligent ways to handle toxic user comments and keeping interaction flow and engagement. This track at the 10th Dialogue System Technology Challenge (DSTC10) is part of the ongoing effort to promote scalable and toxic-free ODS. This paper describes the datasets and baselines provided to participants, as well as submission evaluation results for each of the two proposed subtasks

  Access Paper or Ask Questions

Gaussian Determinantal Processes: a new model for directionality in data

Nov 19, 2021
Subhro Ghosh, Philippe Rigollet

Determinantal point processes (a.k.a. DPPs) have recently become popular tools for modeling the phenomenon of negative dependence, or repulsion, in data. However, our understanding of an analogue of a classical parametric statistical theory is rather limited for this class of models. In this work, we investigate a parametric family of Gaussian DPPs with a clearly interpretable effect of parametric modulation on the observed points. We show that parameter modulation impacts the observed points by introducing directionality in their repulsion structure, and the principal directions correspond to the directions of maximal (i.e. the most long ranged) dependency. This model readily yields a novel and viable alternative to Principal Component Analysis (PCA) as a dimension reduction tool that favors directions along which the data is most spread out. This methodological contribution is complemented by a statistical analysis of a spiked model similar to that employed for covariance matrices as a framework to study PCA. These theoretical investigations unveil intriguing questions for further examination in random matrix theory, stochastic geometry and related topics.

* Proceedings of the National Academy of Sciences 117, no. 24 (2020): 13207-13213 
* Published in the Proceedings of the National Academy of Sciences (Direct Submission) 

  Access Paper or Ask Questions

ViDA-MAN: Visual Dialog with Digital Humans

Oct 26, 2021
Tong Shen, Jiawei Zuo, Fan Shi, Jin Zhang, Liqin Jiang, Meng Chen, Zhengchen Zhang, Wei Zhang, Xiaodong He, Tao Mei

We demonstrate ViDA-MAN, a digital-human agent for multi-modal interaction, which offers realtime audio-visual responses to instant speech inquiries. Compared to traditional text or voice-based system, ViDA-MAN offers human-like interactions (e.g, vivid voice, natural facial expression and body gestures). Given a speech request, the demonstration is able to response with high quality videos in sub-second latency. To deliver immersive user experience, ViDA-MAN seamlessly integrates multi-modal techniques including Acoustic Speech Recognition (ASR), multi-turn dialog, Text To Speech (TTS), talking heads video generation. Backed with large knowledge base, ViDA-MAN is able to chat with users on a number of topics including chit-chat, weather, device control, News recommendations, booking hotels, as well as answering questions via structured knowledge.

  Access Paper or Ask Questions

DRAFT-What you always wanted to know but could not find about block-based environments

Oct 06, 2021
Mauricio Verano Merino, Jurgen Vinju, Mark van den Brand

Block-based environments are visual programming environments, which are becoming more and more popular because of their ease of use. The ease of use comes thanks to their intuitive graphical representation and structural metaphors (jigsaw-like puzzles) to display valid combinations of language constructs to the users. Part of the current popularity of block-based environments is thanks to Scratch. As a result they are often associated with tools for children or young learners. However, it is unclear how these types of programming environments are developed and used in general. So we conducted a systematic literature review on block-based environments by studying 152 papers published between 2014 and 2020, and a non-systematic tool review of 32 block-based environments. In particular, we provide a helpful inventory of block-based editors for end-users on different topics and domains. Likewise, we focused on identifying the main components of block-based environments, how they are engineered, and how they are used. This survey should be equally helpful for language engineering researchers and language engineers alike.

  Access Paper or Ask Questions

Countering Online Hate Speech: An NLP Perspective

Sep 07, 2021
Mudit Chaudhary, Chandni Saxena, Helen Meng

Online hate speech has caught everyone's attention from the news related to the COVID-19 pandemic, US elections, and worldwide protests. Online toxicity - an umbrella term for online hateful behavior, manifests itself in forms such as online hate speech. Hate speech is a deliberate attack directed towards an individual or a group motivated by the targeted entity's identity or opinions. The rising mass communication through social media further exacerbates the harmful consequences of online hate speech. While there has been significant research on hate-speech identification using Natural Language Processing (NLP), the work on utilizing NLP for prevention and intervention of online hate speech lacks relatively. This paper presents a holistic conceptual framework on hate-speech NLP countering methods along with a thorough survey on the current progress of NLP for countering online hate speech. It classifies the countering techniques based on their time of action, and identifies potential future research areas on this topic.

* 12 pages 

  Access Paper or Ask Questions

Is Disentanglement enough? On Latent Representations for Controllable Music Generation

Aug 01, 2021
Ashis Pati, Alexander Lerch

Improving controllability or the ability to manipulate one or more attributes of the generated data has become a topic of interest in the context of deep generative models of music. Recent attempts in this direction have relied on learning disentangled representations from data such that the underlying factors of variation are well separated. In this paper, we focus on the relationship between disentanglement and controllability by conducting a systematic study using different supervised disentanglement learning algorithms based on the Variational Auto-Encoder (VAE) architecture. Our experiments show that a high degree of disentanglement can be achieved by using different forms of supervision to train a strong discriminative encoder. However, in the absence of a strong generative decoder, disentanglement does not necessarily imply controllability. The structure of the latent space with respect to the VAE-decoder plays an important role in boosting the ability of a generative model to manipulate different attributes. To this end, we also propose methods and metrics to help evaluate the quality of a latent space with respect to the afforded degree of controllability.

* To be published in: Proceedings of 22nd International Society for Music Information Retrieval Conference (ISMIR), Online, 2021 

  Access Paper or Ask Questions