Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Topic": models, code, and papers

Probabilistic Frame Induction

Feb 20, 2013
Jackie Chi Kit Cheung, Hoifung Poon, Lucy Vanderwende

In natural-language discourse, related events tend to appear near each other to describe a larger scenario. Such structures can be formalized by the notion of a frame (a.k.a. template), which comprises a set of related events and prototypical participants and event transitions. Identifying frames is a prerequisite for information extraction and natural language generation, and is usually done manually. Methods for inducing frames have been proposed recently, but they typically use ad hoc procedures and are difficult to diagnose or extend. In this paper, we propose the first probabilistic approach to frame induction, which incorporates frames, events, participants as latent topics and learns those frame and event transitions that best explain the text. The number of frames is inferred by a novel application of a split-merge method from syntactic parsing. In end-to-end evaluations from text to induced frames and extracted facts, our method produced state-of-the-art results while substantially reducing engineering effort.

  Access Paper or Ask Questions

"I Wanted to Predict Elections with Twitter and all I got was this Lousy Paper" -- A Balanced Survey on Election Prediction using Twitter Data

Apr 28, 2012
Daniel Gayo-Avello

Predicting X from Twitter is a popular fad within the Twitter research subculture. It seems both appealing and relatively easy. Among such kind of studies, electoral prediction is maybe the most attractive, and at this moment there is a growing body of literature on such a topic. This is not only an interesting research problem but, above all, it is extremely difficult. However, most of the authors seem to be more interested in claiming positive results than in providing sound and reproducible methods. It is also especially worrisome that many recent papers seem to only acknowledge those studies supporting the idea of Twitter predicting elections, instead of conducting a balanced literature review showing both sides of the matter. After reading many of such papers I have decided to write such a survey myself. Hence, in this paper, every study relevant to the matter of electoral prediction using social media is commented. From this review it can be concluded that the predictive power of Twitter regarding elections has been greatly exaggerated, and that hard research problems still lie ahead.

* 13 pages, no figures. Annotated bibliography of 25 papers regarding electoral prediction from Twitter data 

  Access Paper or Ask Questions

Loopy Belief Propagation, Bethe Free Energy and Graph Zeta Function

Mar 03, 2011
Yusuke Watanabe, Kenji Fukumizu

We propose a new approach to the theoretical analysis of Loopy Belief Propagation (LBP) and the Bethe free energy (BFE) by establishing a formula to connect LBP and BFE with a graph zeta function. The proposed approach is applicable to a wide class of models including multinomial and Gaussian types. The connection derives a number of new theoretical results on LBP and BFE. This paper focuses two of such topics. One is the analysis of the region where the Hessian of the Bethe free energy is positive definite, which derives the non-convexity of BFE for graphs with multiple cycles, and a condition of convexity on a restricted set. This analysis also gives a new condition for the uniqueness of the LBP fixed point. The other result is to clarify the relation between the local stability of a fixed point of LBP and local minima of the BFE, which implies, for example, that a locally stable fixed point of the Gaussian LBP is a local minimum of the Gaussian Bethe free energy.

  Access Paper or Ask Questions

Degeneracy: a link between evolvability, robustness and complexity in biological systems

Jan 15, 2010
James Whitacre, Axel Bender

A full accounting of biological robustness remains elusive; both in terms of the mechanisms by which robustness is achieved and the forces that have caused robustness to grow over evolutionary time. Although its importance to topics such as ecosystem services and resilience is well recognized, the broader relationship between robustness and evolution is only starting to be fully appreciated. A renewed interest in this relationship has been prompted by evidence that mutational robustness can play a positive role in the discovery of future adaptive innovations (evolvability) and evidence of an intimate relationship between robustness and complexity in biology. This paper offers a new perspective on the mechanics of evolution and the origins of complexity, robustness, and evolvability. Here we explore the hypothesis that degeneracy, a partial overlap in the functioning of multi-functional components, plays a central role in the evolution and robustness of complex forms. In support of this hypothesis, we present evidence that degeneracy is a fundamental source of robustness, it is intimately tied to multi-scaled complexity, and it establishes conditions that are necessary for system evolvability.

* accepted in BMC Journal of Theoretical Biology and Medical Modelling 

  Access Paper or Ask Questions

Scenario-based Multi-product Advertising Copywriting Generation for E-Commerce

May 21, 2022
Xueying Zhang, Kai Shen, Chi Zhang, Xiaochuan Fan, Yun Xiao, Zhen He, Bo Long, Lingfei Wu

In this paper, we proposed an automatic Scenario-based Multi-product Advertising Copywriting Generation system (SMPACG) for E-Commerce, which has been deployed on a leading Chinese e-commerce platform. The proposed SMPACG consists of two main components: 1) an automatic multi-product combination selection module, which itself is consisted of a topic prediction model, a pattern and attribute-based selection model and an arbitrator model; and 2) an automatic multi-product advertising copywriting generation module, which combines our proposed domain-specific pretrained language model and knowledge-based data enhancement model. The SMPACG is the first system that realizes automatic scenario-based multi-product advertising contents generation, which achieves significant improvements over other state-of-the-art methods. The SMPACG has been not only developed for directly serving for our e-commerce recommendation system, but also used as a real-time writing assistant tool for merchants.

  Access Paper or Ask Questions

A Deeper Look into Aleatoric and Epistemic Uncertainty Disentanglement

Apr 20, 2022
Matias Valdenegro-Toro, Daniel Saromo

Neural networks are ubiquitous in many tasks, but trusting their predictions is an open issue. Uncertainty quantification is required for many applications, and disentangled aleatoric and epistemic uncertainties are best. In this paper, we generalize methods to produce disentangled uncertainties to work with different uncertainty quantification methods, and evaluate their capability to produce disentangled uncertainties. Our results show that: there is an interaction between learning aleatoric and epistemic uncertainty, which is unexpected and violates assumptions on aleatoric uncertainty, some methods like Flipout produce zero epistemic uncertainty, aleatoric uncertainty is unreliable in the out-of-distribution setting, and Ensembles provide overall the best disentangling quality. We also explore the error produced by the number of samples hyper-parameter in the sampling softmax function, recommending N > 100 samples. We expect that our formulation and results help practitioners and researchers choose uncertainty methods and expand the use of disentangled uncertainties, as well as motivate additional research into this topic.

* 8 pages, 12 figures, with supplementary. LatinX in CV Workshop @ CVPR 2022 Camera Ready 

  Access Paper or Ask Questions

Does Video Compression Impact Tracking Accuracy?

Feb 02, 2022
Takehiro Tanaka, Alon Harell, Ivan V. Bajić

Everyone "knows" that compressing a video will degrade the accuracy of object tracking. Yet, a literature search on this topic reveals that there is very little documented evidence for this presumed fact. Part of the reason is that, until recently, there were no object tracking datasets for uncompressed video, which made studying the effects of compression on tracking accuracy difficult. In this paper, using a recently published dataset that contains tracking annotations for uncompressed videos, we examined the degradation of tracking accuracy due to video compression using rigorous statistical methods. Specifically, we examined the impact of quantization parameter (QP) and motion search range (MSR) on Multiple Object Tracking Accuracy (MOTA). The results show that QP impacts MOTA at the 95% confidence level, while there is insufficient evidence to claim that MSR impacts MOTA. Moreover, regression analysis allows us to derive a quantitative relationship between MOTA and QP for the specific tracker used in the experiments.

* 5 pages, 6 figures, 3 tables, IEEE International Symposium on Circuits and Systems (ISCAS) 2022 

  Access Paper or Ask Questions

CCGG: A Deep Autoregressive Model for Class-Conditional Graph Generation

Oct 07, 2021
Matin Yousefabadi, Yassaman Ommi, Faezeh Faez, Amirmojtaba Sabour, Mahdieh Soleymani Baghshah, Hamid R. Rabiee

Graph data structures are fundamental for studying connected entities. With an increase in the number of applications where data is represented as graphs, the problem of graph generation has recently become a hot topic in many signal processing areas. However, despite its significance, conditional graph generation that creates graphs with desired features is relatively less explored in previous studies. This paper addresses the problem of class-conditional graph generation that uses class labels as generation constraints by introducing the Class Conditioned Graph Generator (CCGG). We built CCGG by adding the class information as an additional input to a graph generator model and including a classification loss in its total loss along with a gradient passing trick. Our experiments show that CCGG outperforms existing conditional graph generation methods on various datasets. It also manages to maintain the quality of the generated graphs in terms of distribution-based evaluation metrics.

  Access Paper or Ask Questions

Don't Search for a Search Method -- Simple Heuristics Suffice for Adversarial Text Attacks

Oct 04, 2021
Nathaniel Berger, Stefan Riezler, Artem Sokolov, Sebastian Ebert

Recently more attention has been given to adversarial attacks on neural networks for natural language processing (NLP). A central research topic has been the investigation of search algorithms and search constraints, accompanied by benchmark algorithms and tasks. We implement an algorithm inspired by zeroth order optimization-based attacks and compare with the benchmark results in the TextAttack framework. Surprisingly, we find that optimization-based methods do not yield any improvement in a constrained setup and slightly benefit from approximate gradient information only in unconstrained setups where search spaces are larger. In contrast, simple heuristics exploiting nearest neighbors without querying the target function yield substantial success rates in constrained setups, and nearly full success rate in unconstrained setups, at an order of magnitude fewer queries. We conclude from these results that current TextAttack benchmark tasks are too easy and constraints are too strict, preventing meaningful research on black-box adversarial text attacks.

* Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP Main Conference) 

  Access Paper or Ask Questions