Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Topic": models, code, and papers

A Visuospatial Dataset for Naturalistic Verb Learning

Oct 28, 2020
Dylan Ebert, Ellie Pavlick

We introduce a new dataset for training and evaluating grounded language models. Our data is collected within a virtual reality environment and is designed to emulate the quality of language data to which a pre-verbal child is likely to have access: That is, naturalistic, spontaneous speech paired with richly grounded visuospatial context. We use the collected data to compare several distributional semantics models for verb learning. We evaluate neural models based on 2D (pixel) features as well as feature-engineered models based on 3D (symbolic, spatial) features, and show that neither modeling approach achieves satisfactory performance. Our results are consistent with evidence from child language acquisition that emphasizes the difficulty of learning verbs from naive distributional data. We discuss avenues for future work on cognitively-inspired grounded language learning, and release our corpus with the intent of facilitating research on the topic.

* 9 pages, 3 figures, starsem 2020 

  Access Paper or Ask Questions

A Grid-based Representation for Human Action Recognition

Oct 17, 2020
Soufiane Lamghari, Guillaume-Alexandre Bilodeau, Nicolas Saunier

Human action recognition (HAR) in videos is a fundamental research topic in computer vision. It consists mainly in understanding actions performed by humans based on a sequence of visual observations. In recent years, HAR have witnessed significant progress, especially with the emergence of deep learning models. However, most of existing approaches for action recognition rely on information that is not always relevant for the task, and are limited in the way they fuse temporal information. In this paper, we propose a novel method for human action recognition that encodes efficiently the most discriminative appearance information of an action with explicit attention on representative pose features, into a new compact grid representation. Our GRAR (Grid-based Representation for Action Recognition) method is tested on several benchmark datasets that demonstrate that our model can accurately recognize human actions, despite intra-class appearance variations and occlusion challenges.

* Accepted on 25th International Conference on Pattern Recognition (ICPR 2020) 

  Access Paper or Ask Questions

PCA Reduced Gaussian Mixture Models with Applications in Superresolution

Sep 16, 2020
Johannes Hertrich, Dang Phoung Lan Nguyen, Jean-Fancois Aujol, Dominique Bernard, Yannick Berthoumieu, Abdellativ Saadaldin, Gabriele Steidl

Despite the rapid development of computational hardware, the treatment of large and high dimensional data sets is still a challenging problem. This paper provides a twofold contribution to the topic. First, we propose a Gaussian Mixture Model in conjunction with a reduction of the dimensionality of the data in each component of the model by principal component analysis, called PCA-GMM. To learn the (low dimensional) parameters of the mixture model we propose an EM algorithm whose M-step requires the solution of constrained optimization problems. Fortunately, these constrained problems do not depend on the usually large number of samples and can be solved efficiently by an (inertial) proximal alternating linearized minimization algorithm. Second, we apply our PCA-GMM for the superresolution of 2D and 3D material images based on the approach of Sandeep and Jacob. Numerical results confirm the moderate influence of the dimensionality reduction on the overall superresolution result.


  Access Paper or Ask Questions

Leveraging Historical Interaction Data for Improving Conversational Recommender System

Aug 19, 2020
Kun Zhou, Wayne Xin Zhao, Hui Wang, Sirui Wang, Fuzheng Zhang, Zhongyuan Wang, Ji-Rong Wen

Recently, conversational recommender system (CRS) has become an emerging and practical research topic. Most of the existing CRS methods focus on learning effective preference representations for users from conversation data alone. While, we take a new perspective to leverage historical interaction data for improving CRS. For this purpose, we propose a novel pre-training approach to integrating both item-based preference sequence (from historical interaction data) and attribute-based preference sequence (from conversation data) via pre-training methods. We carefully design two pre-training tasks to enhance information fusion between item- and attribute-based preference. To improve the learning performance, we further develop an effective negative sample generator which can produce high-quality negative samples. Experiment results on two real-world datasets have demonstrated the effectiveness of our approach for improving CRS.

* Accepted as CIKM short paper 

  Access Paper or Ask Questions

Learning With Differential Privacy

Jun 11, 2020
Poushali Sengupta, Sudipta Paul, Subhankar Mishra

The leakage of data might have been an extreme effect on the personal level if it contains sensitive information. Common prevention methods like encryption-decryption, endpoint protection, intrusion detection system are prone to leakage. Differential privacy comes to the rescue with a proper promise of protection against leakage, as it uses a randomized response technique at the time of collection of the data which promises strong privacy with better utility. Differential privacy allows one to access the forest of data by describing their pattern of groups without disclosing any individual trees. The current adaption of differential privacy by leading tech companies and academia encourages authors to explore the topic in detail. The different aspects of differential privacy, it's application in privacy protection and leakage of information, a comparative discussion, on the current research approaches in this field, its utility in the real world as well as the trade-offs - will be discussed.

* 25 pages, Accepted to - ""Handbook of Research on Cyber Crime and Information Privacy"" as a book chapter 

  Access Paper or Ask Questions

Voice and accompaniment separation in music using self-attention convolutional neural network

Mar 19, 2020
Yuzhou Liu, Balaji Thoshkahna, Ali Milani, Trausti Kristjansson

Music source separation has been a popular topic in signal processing for decades, not only because of its technical difficulty, but also due to its importance to many commercial applications, such as automatic karoake and remixing. In this work, we propose a novel self-attention network to separate voice and accompaniment in music. First, a convolutional neural network (CNN) with densely-connected CNN blocks is built as our base network. We then insert self-attention subnets at different levels of the base CNN to make use of the long-term intra-dependency of music, i.e., repetition. Within self-attention subnets, repetitions of the same musical patterns inform reconstruction of other repetitions, for better source separation performance. Results show the proposed method leads to 19.5% relative improvement in vocals separation in terms of SDR. We compare our methods with state-of-the-art systems i.e. MMDenseNet and MMDenseLSTM.


  Access Paper or Ask Questions

Universal adversarial examples in speech command classification

Nov 26, 2019
Jon Vadillo, Roberto Santana

Adversarial examples are inputs intentionally perturbed with the aim of forcing a machine learning model to produce a wrong prediction, while the changes are not easily detectable by a human. Although this topic has been intensively studied in the image domain, classification tasks in the audio domain have received less attention. In this paper we address the existence of universal perturbations for speech command classification. We provide evidence that universal attacks can be generated for speech command classification tasks, which are able to generalize across different models to a significant extent. Additionally, a novel analytical framework is proposed for the evaluation of universal perturbations under different levels of universality, demonstrating that the feasibility of generating effective perturbations decreases as the universality level increases. Finally, we propose a more detailed and rigorous framework to measure the amount of distortion introduced by the perturbations, demonstrating that the methods employed by convention are not realistic in audio-based problems.

* 14 pages, 2 figures, 4 tables; removed unused files; IEEE Copyrighted version 

  Access Paper or Ask Questions

Multilingual End-to-End Speech Translation

Oct 31, 2019
Hirofumi Inaguma, Kevin Duh, Tatsuya Kawahara, Shinji Watanabe

In this paper, we propose a simple yet effective framework for multilingual end-to-end speech translation (ST), in which speech utterances in source languages are directly translated to the desired target languages with a universal sequence-to-sequence architecture. While multilingual models have shown to be useful for automatic speech recognition (ASR) and machine translation (MT), this is the first time they are applied to the end-to-end ST problem. We show the effectiveness of multilingual end-to-end ST in two scenarios: one-to-many and many-to-many translations with publicly available data. We experimentally confirm that multilingual end-to-end ST models significantly outperform bilingual ones in both scenarios. The generalization of multilingual training is also evaluated in a transfer learning scenario to a very low-resource language pair. All of our codes and the database are publicly available to encourage further research in this emergent multilingual ST topic.

* Accepted to ASRU 2019 

  Access Paper or Ask Questions

<<
301
302
303
304
305
306
307
308
309
310
311
312
313
>>