Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Topic": models, code, and papers

Learning With Differential Privacy

Jun 11, 2020
Poushali Sengupta, Sudipta Paul, Subhankar Mishra

The leakage of data might have been an extreme effect on the personal level if it contains sensitive information. Common prevention methods like encryption-decryption, endpoint protection, intrusion detection system are prone to leakage. Differential privacy comes to the rescue with a proper promise of protection against leakage, as it uses a randomized response technique at the time of collection of the data which promises strong privacy with better utility. Differential privacy allows one to access the forest of data by describing their pattern of groups without disclosing any individual trees. The current adaption of differential privacy by leading tech companies and academia encourages authors to explore the topic in detail. The different aspects of differential privacy, it's application in privacy protection and leakage of information, a comparative discussion, on the current research approaches in this field, its utility in the real world as well as the trade-offs - will be discussed.

* 25 pages, Accepted to - ""Handbook of Research on Cyber Crime and Information Privacy"" as a book chapter 

  Access Paper or Ask Questions

Voice and accompaniment separation in music using self-attention convolutional neural network

Mar 19, 2020
Yuzhou Liu, Balaji Thoshkahna, Ali Milani, Trausti Kristjansson

Music source separation has been a popular topic in signal processing for decades, not only because of its technical difficulty, but also due to its importance to many commercial applications, such as automatic karoake and remixing. In this work, we propose a novel self-attention network to separate voice and accompaniment in music. First, a convolutional neural network (CNN) with densely-connected CNN blocks is built as our base network. We then insert self-attention subnets at different levels of the base CNN to make use of the long-term intra-dependency of music, i.e., repetition. Within self-attention subnets, repetitions of the same musical patterns inform reconstruction of other repetitions, for better source separation performance. Results show the proposed method leads to 19.5% relative improvement in vocals separation in terms of SDR. We compare our methods with state-of-the-art systems i.e. MMDenseNet and MMDenseLSTM.

  Access Paper or Ask Questions

Universal adversarial examples in speech command classification

Nov 26, 2019
Jon Vadillo, Roberto Santana

Adversarial examples are inputs intentionally perturbed with the aim of forcing a machine learning model to produce a wrong prediction, while the changes are not easily detectable by a human. Although this topic has been intensively studied in the image domain, classification tasks in the audio domain have received less attention. In this paper we address the existence of universal perturbations for speech command classification. We provide evidence that universal attacks can be generated for speech command classification tasks, which are able to generalize across different models to a significant extent. Additionally, a novel analytical framework is proposed for the evaluation of universal perturbations under different levels of universality, demonstrating that the feasibility of generating effective perturbations decreases as the universality level increases. Finally, we propose a more detailed and rigorous framework to measure the amount of distortion introduced by the perturbations, demonstrating that the methods employed by convention are not realistic in audio-based problems.

* 14 pages, 2 figures, 4 tables; removed unused files; IEEE Copyrighted version 

  Access Paper or Ask Questions

Multilingual End-to-End Speech Translation

Oct 31, 2019
Hirofumi Inaguma, Kevin Duh, Tatsuya Kawahara, Shinji Watanabe

In this paper, we propose a simple yet effective framework for multilingual end-to-end speech translation (ST), in which speech utterances in source languages are directly translated to the desired target languages with a universal sequence-to-sequence architecture. While multilingual models have shown to be useful for automatic speech recognition (ASR) and machine translation (MT), this is the first time they are applied to the end-to-end ST problem. We show the effectiveness of multilingual end-to-end ST in two scenarios: one-to-many and many-to-many translations with publicly available data. We experimentally confirm that multilingual end-to-end ST models significantly outperform bilingual ones in both scenarios. The generalization of multilingual training is also evaluated in a transfer learning scenario to a very low-resource language pair. All of our codes and the database are publicly available to encourage further research in this emergent multilingual ST topic.

* Accepted to ASRU 2019 

  Access Paper or Ask Questions

SizeNet: Weakly Supervised Learning of Visual Size and Fit in Fashion Images

May 28, 2019
Nour Karessli, Romain Guigourès, Reza Shirvany

Finding clothes that fit is a hot topic in the e-commerce fashion industry. Most approaches addressing this problem are based on statistical methods relying on historical data of articles purchased and returned to the store. Such approaches suffer from the cold start problem for the thousands of articles appearing on the shopping platforms every day, for which no prior purchase history is available. We propose to employ visual data to infer size and fit characteristics of fashion articles. We introduce SizeNet, a weakly-supervised teacher-student training framework that leverages the power of statistical models combined with the rich visual information from article images to learn visual cues for size and fit characteristics, capable of tackling the challenging cold start problem. Detailed experiments are performed on thousands of textile garments, including dresses, trousers, knitwear, tops, etc. from hundreds of different brands.

* IEEE Conference on Computer Vision and Pattern Recognition Workshop (CVPRW) 2019 Focus on Fashion and Subjective Search - Understanding Subjective Attributes of Data (FFSS-USAD) 

  Access Paper or Ask Questions

What and Where: A Context-based Recommendation System for Object Insertion

Nov 24, 2018
Song-Hai Zhang, Zhengping Zhou, Bin Liu, Xin Dong, Dun Liang, Peter Hall, Shi-Min Hu

In this work, we propose a novel topic consisting of two dual tasks: 1) given a scene, recommend objects to insert, 2) given an object category, retrieve suitable background scenes. A bounding box for the inserted object is predicted in both tasks, which helps downstream applications such as semi-automated advertising and video composition. The major challenge lies in the fact that the target object is neither present nor localized at test time, whereas available datasets only provide scenes with existing objects. To tackle this problem, we build an unsupervised algorithm based on object-level contexts, which explicitly models the joint probability distribution of object categories and bounding boxes with a Gaussian mixture model. Experiments on our newly annotated test set demonstrate that our system outperforms existing baselines on all subtasks, and do so under a unified framework. Our contribution promises future extensions and applications.

  Access Paper or Ask Questions

From Perception to Decision: A Data-driven Approach to End-to-end Motion Planning for Autonomous Ground Robots

Nov 06, 2018
Mark Pfeiffer, Michael Schaeuble, Juan Nieto, Roland Siegwart, Cesar Cadena

Learning from demonstration for motion planning is an ongoing research topic. In this paper we present a model that is able to learn the complex mapping from raw 2D-laser range findings and a target position to the required steering commands for the robot. To our best knowledge, this work presents the first approach that learns a target-oriented end-to-end navigation model for a robotic platform. The supervised model training is based on expert demonstrations generated in simulation with an existing motion planner. We demonstrate that the learned navigation model is directly transferable to previously unseen virtual and, more interestingly, real-world environments. It can safely navigate the robot through obstacle-cluttered environments to reach the provided targets. We present an extensive qualitative and quantitative evaluation of the neural network-based motion planner, and compare it to a grid-based global approach, both in simulation and in real-world experiments.

* presented at the IEEE International Conference on Robotics and Automation (ICRA) 2017 

  Access Paper or Ask Questions

Categorization of Comparative Sentences for Argument Mining

Sep 17, 2018
Mirco Franzek, Alexander Panchenko, Chris Biemann

We present the first work on domain-independent comparative argument mining (CAM), which is the automatic extraction of direct comparisons from text. After motivating the need and identifying the widespread use of this so far under-researched topic, we present the first publicly available open-domain dataset for CAM. The dataset was collected using crowdsourcing and contains 7199 unique sentences for 217 distinct comparison target pairs selected over several domains, of which 27% contain a directed (better vs. worse) comparison. In classification experiments, we examine the impact of representations, features, and classifiers, and reach an F1-score of 88% with a gradient boosting model based on pre-trained sentence embeddings, especially reliably identifying non-comparative sentences. This paves the way for domain-independent comparison extraction from web-scale corpora for the use in result ranking and presentation for comparative queries.

  Access Paper or Ask Questions