We present a multilingual bag-of-entities model that effectively boosts the performance of zero-shot cross-lingual text classification by extending a multilingual pre-trained language model (e.g., M-BERT). It leverages the multilingual nature of Wikidata: entities in multiple languages representing the same concept are defined with a unique identifier. This enables entities described in multiple languages to be represented using shared embeddings. A model trained on entity features in a resource-rich language can thus be directly applied to other languages. Our experimental results on cross-lingual topic classification (using the MLDoc and TED-CLDC datasets) and entity typing (using the SHINRA2020-ML dataset) show that the proposed model consistently outperforms state-of-the-art models.
In the meantime, a wide variety of terminologies, motivations, approaches and evaluation criteria have been developed within the scope of research on explainable artificial intelligence (XAI). Many taxonomies can be found in the literature, each with a different focus, but also showing many points of overlap. In this paper, we summarize the most cited and current taxonomies in a meta-analysis in order to highlight the essential aspects of the state-of-the-art in XAI. We also present and add terminologies as well as concepts from a large number of survey articles on the topic. Last but not least, we illustrate concepts from the higher-level taxonomy with more than 50 example methods, which we categorize accordingly, thus providing a wide-ranging overview of aspects of XAI and paving the way for use case-appropriate as well as context-specific subsequent research.
Development and diffusion of machine learning and big data tools provide a new tool for architects and urban planners that could be used as analytical or design instruments. The topic investigated in this paper is the application of Generative Adversarial Networks to the design of an urban block. The research presents a flexible model able to adapt to the morphological characteristics of a city. This method does not define explicitly any of the parameters of an urban block typical for a city, the algorithm learns them from the existing urban context. This approach has been applied to the cities with different morphology: Milan, Amsterdam, Tallinn, Turin, and Bengaluru in order to see the performance of the model and the possibility of style translation between different cities. The data are gathered from Openstreetmap and Open Data portals of the cities. This research presents the results of the experiments and their quantitative and qualitative evaluation.
For a researcher, writing a good research statement is crucial but costs a lot of time and effort. To help researchers, in this paper, we propose the research statement generation (RSG) task which aims to summarize one's research achievements and help prepare a formal research statement. For this task, we conduct a comprehensive attempt including corpus construction, method design, and performance evaluation. First, we construct an RSG dataset with 62 research statements and the corresponding 1,203 publications. Due to the limitation of our resources, we propose a practical RSG method which identifies a researcher's research directions by topic modeling and clustering techniques and extracts salient sentences by a neural text summarizer. Finally, experiments show that our method outperforms all the baselines with better content coverage and coherence.
Evasion attack in multi-label learning systems is an interesting, widely witnessed, yet rarely explored research topic. Characterizing the crucial factors determining the attackability of the multi-label adversarial threat is the key to interpret the origin of the adversarial vulnerability and to understand how to mitigate it. Our study is inspired by the theory of adversarial risk bound. We associate the attackability of a targeted multi-label classifier with the regularity of the classifier and the training data distribution. Beyond the theoretical attackability analysis, we further propose an efficient empirical attackability estimator via greedy label space exploration. It provides provably computational efficiency and approximation accuracy. Substantial experimental results on real-world datasets validate the unveiled attackability factors and the effectiveness of the proposed empirical attackability indicator
Modeling place functions from a computational perspective is a prevalent research topic. The technology of embedding enables a new approach that allows modeling the function of a place by its chronological context as part of a trajectory. The embedding similarity was previously proposed as a new metric for measuring the similarity of place functions, with some preliminary results. This study explores if this approach is meaningful for geographical units at a much smaller geographical granularity compared to previous studies. In addition, this study investigates if the geographical distance can influence the embedding similarity. The empirical evaluations based on a big vehicle trajectory data set confirm that the embedding similarity can be a metric proxy for place functions. However, the results also show that the embedding similarity is still bounded by the distance at the local scale.
This paper describes the participation of the QMUL-SDS team for Task 1 of the CLEF 2020 CheckThat! shared task. The purpose of this task is to determine the check-worthiness of tweets about COVID-19 to identify and prioritise tweets that need fact-checking. The overarching aim is to further support ongoing efforts to protect the public from fake news and help people find reliable information. We describe and analyse the results of our submissions. We show that a CNN using COVID-Twitter-BERT (CT-BERT) enhanced with numeric expressions can effectively boost performance from baseline results. We also show results of training data augmentation with rumours on other topics. Our best system ranked fourth in the task with encouraging outcomes showing potential for improved results in the future.
Following Prof. Mark Harman of Facebook's keynote and formal presentations (which are recorded in the proceedings) there was a wide ranging discussion at the eighth international Genetic Improvement workshop, GI-2020 @ ICSE (held as part of the 42nd ACM/IEEE International Conference on Software Engineering on Friday 3rd July 2020). Topics included industry take up, human factors, explainabiloity (explainability, justifyability, exploitability) and GI benchmarks. We also contrast various recent online approaches (e.g. SBST 2020) to holding virtual computer science conferences and workshops via the WWW on the Internet without face-2-face interaction. Finally we speculate on how the Coronavirus Covid-19 Pandemic will affect research next year and into the future.
Dialog management (DM) is a crucial component in a task-oriented dialog system. Given the dialog history, DM predicts the dialog state and decides the next action that the dialog agent should take. Recently, dialog policy learning has been widely formulated as a Reinforcement Learning (RL) problem, and more works focus on the applicability of DM. In this paper, we survey recent advances and challenges within three critical topics for DM: (1) improving model scalability to facilitate dialog system modeling in new scenarios, (2) dealing with the data scarcity problem for dialog policy learning, and (3) enhancing the training efficiency to achieve better task-completion performance . We believe that this survey can shed a light on future research in dialog management.
Predicting smartphone users location with WiFi fingerprints has been a popular research topic recently. In this work, we propose two novel deep learning-based models, the convolutional mixture density recurrent neural network and the VAE-based semi-supervised learning model. The convolutional mixture density recurrent neural network is designed for path prediction, in which the advantages of convolutional neural networks, recurrent neural networks and mixture density networks are combined. Further, since most of real-world datasets are not labeled, we devise the VAE-based model for the semi-supervised learning tasks. In order to test the proposed models, we conduct the validation experiments on the real-world datasets. The final results verify the effectiveness of our approaches and show the superiority over other existing methods.