Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Topic": models, code, and papers

USR: An Unsupervised and Reference Free Evaluation Metric for Dialog Generation

May 01, 2020
Shikib Mehri, Maxine Eskenazi

The lack of meaningful automatic evaluation metrics for dialog has impeded open-domain dialog research. Standard language generation metrics have been shown to be ineffective for evaluating dialog models. To this end, this paper presents USR, an UnSupervised and Reference-free evaluation metric for dialog. USR is a reference-free metric that trains unsupervised models to measure several desirable qualities of dialog. USR is shown to strongly correlate with human judgment on both Topical-Chat (turn-level: 0.42, system-level: 1.0) and PersonaChat (turn-level: 0.48 and system-level: 1.0). USR additionally produces interpretable measures for several desirable properties of dialog.

* Accepted to ACL 2020 as long paper 

  Access Paper or Ask Questions

Analysing the Extent of Misinformation in Cancer Related Tweets

Apr 02, 2020
Rakesh Bal, Sayan Sinha, Swastika Dutta, Rishabh Joshi, Sayan Ghosh, Ritam Dutt

Twitter has become one of the most sought after places to discuss a wide variety of topics, including medically relevant issues such as cancer. This helps spread awareness regarding the various causes, cures and prevention methods of cancer. However, no proper analysis has been performed, which discusses the validity of such claims. In this work, we aim to tackle the misinformation spread in such platforms. We collect and present a dataset regarding tweets which talk specifically about cancer and propose an attention-based deep learning model for automated detection of misinformation along with its spread. We then do a comparative analysis of the linguistic variation in the text corresponding to misinformation and truth. This analysis helps us gather relevant insights on various social aspects related to misinformed tweets.

* Proceedings of the 14th International Conference on Web and Social Media (ICWSM-20) 

  Access Paper or Ask Questions

Approximation smooth and sparse functions by deep neural networks without saturation

Jan 13, 2020
Xia Liu

Constructing neural networks for function approximation is a classical and longstanding topic in approximation theory. In this paper, we aim at constructing deep neural networks (deep nets for short) with three hidden layers to approximate smooth and sparse functions. In particular, we prove that the constructed deep nets can reach the optimal approximation rate in approximating both smooth and sparse functions with controllable magnitude of free parameters. Since the saturation that describes the bottleneck of approximate is an insurmountable problem of constructive neural networks, we also prove that deepening the neural network with only one more hidden layer can avoid the saturation. The obtained results underlie advantages of deep nets and provide theoretical explanations for deep learning.


  Access Paper or Ask Questions

Query-Focused Scenario Construction

Sep 15, 2019
Su Wang, Greg Durrett, Katrin Erk

The news coverage of events often contains not one but multiple incompatible accounts of what happened. We develop a query-based system that extracts compatible sets of events (scenarios) from such data, formulated as one-class clustering. Our system incrementally evaluates each event's compatibility with already selected events, taking order into account. We use synthetic data consisting of article mixtures for scalable training and evaluate our model on a new human-curated dataset of scenarios about real-world news topics. Stronger neural network models and harder synthetic training settings are both important to achieve high performance, and our final scenario construction system substantially outperforms baselines based on prior work.

* EMNLP-IJCNLP 2019 
* Accepted at EMNLP-IJCNLP 2019 

  Access Paper or Ask Questions

Detecting Everyday Scenarios in Narrative Texts

Jun 10, 2019
Lilian D. A. Wanzare, Michael Roth, Manfred Pinkal

Script knowledge consists of detailed information on everyday activities. Such information is often taken for granted in text and needs to be inferred by readers. Therefore, script knowledge is a central component to language comprehension. Previous work on representing scripts is mostly based on extensive manual work or limited to scenarios that can be found with sufficient redundancy in large corpora. We introduce the task of scenario detection, in which we identify references to scripts. In this task, we address a wide range of different scripts (200 scenarios) and we attempt to identify all references to them in a collection of narrative texts. We present a first benchmark data set and a baseline model that tackles scenario detection using techniques from topic segmentation and text classification.

* Storytelling workshop [email protected] 

  Access Paper or Ask Questions

Multiway clustering via tensor block models

Jun 10, 2019
Yuchen Zeng, Miaoyan Wang

We consider the problem of identifying multiway block structure from a large noisy tensor. Such problems arise frequently in applications such as genomics, recommendation system, topic modeling, and sensor network localization. We propose a tensor block model, develop a unified least-square estimation, and obtain the theoretical accuracy guarantees for multiway clustering. The statistical convergence of the estimator is established, and we show that the associated clustering procedure achieves partition consistency. A sparse regularization is further developed for identifying important blocks with elevated means. The proposal handles a broad range of data types, including binary, continuous, and hybrid observations. Through simulation and application to two real datasets, we demonstrate the outperformance of our approach over previous methods.


  Access Paper or Ask Questions

Convolutional Feature Extraction and Neural Arithmetic Logic Units for Stock Prediction

May 18, 2019
Shangeth Rajaa, Jajati Keshari Sahoo

Stock prediction is a topic undergoing intense study for many years. Finance experts and mathematicians have been working on a way to predict the future stock price so as to decide to buy the stock or sell it to make profit. Stock experts or economists, usually analyze on the previous stock values using technical indicators, sentiment analysis etc to predict the future stock price. In recent years, many researches have extensively used machine learning for predicting the stock behaviour. In this paper we propose data driven deep learning approach to predict the future stock value with the previous price with the feature extraction property of convolutional neural network and to use Neural Arithmetic Logic Units with it.

* Accepted at ICACDS 2019 - Springer CCIS 

  Access Paper or Ask Questions

A Survey on Traffic Signal Control Methods

Apr 17, 2019
Hua Wei, Guanjie Zheng, Vikash Gayah, Zhenhui Li

Traffic signal control is an important and challenging real-world problem, which aims to minimize the travel time of vehicles by coordinating their movements at the road intersections. Current traffic signal control systems in use still rely heavily on oversimplified information and rule-based methods, although we now have richer data, more computing power and advanced methods to drive the development of intelligent transportation. With the growing interest in intelligent transportation using machine learning methods like reinforcement learning, this survey covers the widely acknowledged transportation approaches and a comprehensive list of recent literature on reinforcement for traffic signal control. We hope this survey can foster interdisciplinary research on this important topic.

* 30 pages 

  Access Paper or Ask Questions

Find a Reasonable Ending for Stories: Does Logic Relation Help the Story Cloze Test?

Dec 13, 2018
Mingyue Shang, Zhenxin Fu, Hongzhi Yin, Bo Tang, Dongyan Zhao, Rui Yan

Natural language understanding is a challenging problem that covers a wide range of tasks. While previous methods generally train each task separately, we consider combining the cross-task features to enhance the task performance. In this paper, we incorporate the logic information with the help of the Natural Language Inference (NLI) task to the Story Cloze Test (SCT). Previous work on SCT considered various semantic information, such as sentiment and topic, but lack the logic information between sentences which is an essential element of stories. Thus we propose to extract the logic information during the course of the story to improve the understanding of the whole story. The logic information is modeled with the help of the NLI task. Experimental results prove the strength of the logic information.

* Student Abstract in AAAI-2019 

  Access Paper or Ask Questions

Variational Bayesian Complex Network Reconstruction

Dec 11, 2018
Shuang Xu, Chun-Xia Zhang, Pei Wang, Jiangshe Zhang

Complex network reconstruction is a hot topic in many fields. A popular data-driven reconstruction framework is based on lasso. However, it is found that, in the presence of noise, it may be inefficient for lasso to determine the network topology. This paper builds a new framework to cope with this problem. The key idea is to employ a series of linear regression problems to model the relationship between network nodes, and then to use an efficient variational Bayesian method to infer the unknown coefficients. Based on the obtained information, the network is finally reconstructed by determining whether two nodes connect with each other or not. The numerical experiments conducted with both synthetic and real data demonstrate that the new method outperforms lasso with regard to both reconstruction accuracy and running speed.


  Access Paper or Ask Questions

<<
228
229
230
231
232
233
234
235
236
237
238
239
240
>>