We present the Twitter Job/Employment Corpus, a collection of tweets annotated by a humans-in-the-loop supervised learning framework that integrates crowdsourcing contributions and expertise on the local community and employment environment. Previous computational studies of job-related phenomena have used corpora collected from workplace social media that are hosted internally by the employers, and so lacks independence from latent job-related coercion and the broader context that an open domain, general-purpose medium such as Twitter provides. Our new corpus promises to be a benchmark for the extraction of job-related topics and advanced analysis and modeling, and can potentially benefit a wide range of research communities in the future.
There has been significant interest of late in generating behavior of agents that is interpretable to the human (observer) in the loop. However, the work in this area has typically lacked coherence on the topic, with proposed solutions for "explicable", "legible", "predictable" and "transparent" planning with overlapping, and sometimes conflicting, semantics all aimed at some notion of understanding what intentions the observer will ascribe to an agent by observing its behavior. This is also true for the recent works on "security" and "privacy" of plans which are also trying to answer the same question, but from the opposite point of view -- i.e. when the agent is trying to hide instead of revealing its intentions. This paper attempts to provide a workable taxonomy of relevant concepts in this exciting and emerging field of inquiry.
Internet of vehicles is a promising area related to D2D communication and internet of things. We present a novel perspective for vehicular communications, social vehicle swarms, to study and analyze socially aware internet of vehicles with the assistance of an agent-based model intended to reveal hidden patterns behind superficial data. After discussing its components, namely its agents, environments, and rules, we introduce supportive technology and methods, deep reinforcement learning, privacy preserving data mining and sub-cloud computing, in order to detect the most significant and interesting information for each individual effectively, which is the key desire. Finally, several relevant research topics and challenges are discussed.
Previous research on word embeddings has shown that sparse representations, which can be either learned on top of existing dense embeddings or obtained through model constraints during training time, have the benefit of increased interpretability properties: to some degree, each dimension can be understood by a human and associated with a recognizable feature in the data. In this paper, we transfer this idea to sentence embeddings and explore several approaches to obtain a sparse representation. We further introduce a novel, quantitative and automated evaluation metric for sentence embedding interpretability, based on topic coherence methods. We observe an increase in interpretability compared to dense models, on a dataset of movie dialogs and on the scene descriptions from the MS COCO dataset.
Interpreting a nonparametric regression model with many predictors is known to be a challenging problem. There has been renewed interest in this topic due to the extensive use of machine learning algorithms and the difficulty in understanding and explaining their input-output relationships. This paper develops a unified framework using a derivative-based approach for existing tools in the literature, including the partial-dependence plots, marginal plots and accumulated effects plots. It proposes a new interpretation technique called the accumulated total derivative effects plot and demonstrates how its components can be used to develop extensive insights in complex regression models with correlated predictors. The techniques are illustrated through simulation results.
Gender prediction has typically focused on lexical and social network features, yielding good performance, but making systems highly language-, topic-, and platform-dependent. Cross-lingual embeddings circumvent some of these limitations, but capture gender-specific style less. We propose an alternative: bleaching text, i.e., transforming lexical strings into more abstract features. This study provides evidence that such features allow for better transfer across languages. Moreover, we present a first study on the ability of humans to perform cross-lingual gender prediction. We find that human predictive power proves similar to that of our bleached models, and both perform better than lexical models.
Human activity recognition using smart home sensors is one of the bases of ubiquitous computing in smart environments and a topic undergoing intense research in the field of ambient assisted living. The increasingly large amount of data sets calls for machine learning methods. In this paper, we introduce a deep learning model that learns to classify human activities without using any prior knowledge. For this purpose, a Long Short Term Memory (LSTM) Recurrent Neural Network was applied to three real world smart home datasets. The results of these experiments show that the proposed approach outperforms the existing ones in terms of accuracy and performance.
Ethics of algorithms is an emerging topic in various disciplines such as social science, law, and philosophy, but also artificial intelligence (AI). The value alignment problem expresses the challenge of (machine) learning values that are, in some way, aligned with human requirements or values. In this paper I argue for looking at how humans have formalized and communicated values, in professional codes of ethics, and for exploring declarative decision-theoretic ethical programs (DDTEP) to formalize codes of ethics. This renders machine ethical reasoning and decision-making, as well as learning, more transparent and hopefully more accountable. The paper includes proof-of-concept examples of known toy dilemmas and gatekeeping domains such as archives and libraries.
In this paper, we describe the Lithium Natural Language Processing (NLP) system - a resource-constrained, high- throughput and language-agnostic system for information extraction from noisy user generated text on social media. Lithium NLP extracts a rich set of information including entities, topics, hashtags and sentiment from text. We discuss several real world applications of the system currently incorporated in Lithium products. We also compare our system with existing commercial and academic NLP systems in terms of performance, information extracted and languages supported. We show that Lithium NLP is at par with and in some cases, outperforms state- of-the-art commercial NLP systems.
This paper develops intelligent algorithms for robots to reorient objects. Given the initial and goal poses of an object, the proposed algorithms plan a sequence of robot poses and grasp configurations that reorient the object from its initial pose to the goal. While the topic has been studied extensively in previous work, this paper makes important improvements in grasp planning by using over-segmented meshes, in data storage by using relational database, and in regrasp planning by mixing real-world roadmaps. The improvements enable robots to do robust regrasp planning using 10,000s of grasps and their relationships in interactive time. The proposed algorithms are validated using various objects and robots.