Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Topic": models, code, and papers

How Do You #relax When You're #stressed? A Content Analysis and Infodemiology Study of Stress-Related Tweets

Nov 22, 2019
Son Doan, Amanda Ritchart, Nicholas Perry, Juan D Chaparro, Mike Conway

Background: Stress is a contributing factor to many major health problems in the United States, such as heart disease, depression, and autoimmune diseases. Relaxation is often recommended in mental health treatment as a frontline strategy to reduce stress, thereby improving health conditions. Objective: The objective of our study was to understand how people express their feelings of stress and relaxation through Twitter messages. Methods: We first performed a qualitative content analysis of 1326 and 781 tweets containing the keywords "stress" and "relax", respectively. We then investigated the use of machine learning algorithms to automatically classify tweets as stress versus non stress and relaxation versus non relaxation. Finally, we applied these classifiers to sample datasets drawn from 4 cities with the goal of evaluating the extent of any correlation between our automatic classification of tweets and results from public stress surveys. Results: Content analysis showed that the most frequent topic of stress tweets was education, followed by work and social relationships. The most frequent topic of relaxation tweets was rest and vacation, followed by nature and water. When we applied the classifiers to the cities dataset, the proportion of stress tweets in New York and San Diego was substantially higher than that in Los Angeles and San Francisco. Conclusions: This content analysis and infodemiology study revealed that Twitter, when used in conjunction with natural language processing techniques, is a useful data source for understanding stress and stress management strategies, and can potentially supplement infrequently collected survey-based stress data.

* JMIR Public Health Surveill 2017;3(2):e35 
* 38 pages,12 figures, 6 tables, 5 Appendix (full version) -- shorter version published in JMIR Public Health Surveill 2017;3(2):e35 

  Access Paper or Ask Questions

Persua: A Visual Interactive System to Enhance the Persuasiveness of Arguments in Online Discussion

Apr 21, 2022
Meng Xia, Qian Zhu, Xingbo Wang, Fei Nie, Huamin Qu, Xiaojuan Ma

Persuading people to change their opinions is a common practice in online discussion forums on topics ranging from political campaigns to relationship consultation. Enhancing people's ability to write persuasive arguments could not only practice their critical thinking and reasoning but also contribute to the effectiveness and civility in online communication. It is, however, not an easy task in online discussion settings where written words are the primary communication channel. In this paper, we derived four design goals for a tool that helps users improve the persuasiveness of arguments in online discussions through a survey with 123 online forum users and interviews with five debating experts. To satisfy these design goals, we analyzed and built a labeled dataset of fine-grained persuasive strategies (i.e., logos, pathos, ethos, and evidence) in 164 arguments with high ratings on persuasiveness from ChangeMyView, a popular online discussion forum. We then designed an interactive visual system, Persua, which provides example-based guidance on persuasive strategies to enhance the persuasiveness of arguments. In particular, the system constructs portfolios of arguments based on different persuasive strategies applied to a given discussion topic. It then presents concrete examples based on the difference between the portfolios of user input and high-quality arguments in the dataset. A between-subjects study shows suggestive evidence that Persua encourages users to submit more times for feedback and helps users improve more on the persuasiveness of their arguments than a baseline system. Finally, a set of design considerations was summarized to guide future intelligent systems that improve the persuasiveness in text.

* This paper will appear in CSCW 2022 

  Access Paper or Ask Questions

Improving Services Offered by Internet Providers by Analyzing Online Reviews using Text Analytics

Aug 16, 2020
Suchithra Rajendran, John Fennewald

With the proliferation of digital infrastructure, there is a plethora of demand for internet services, which makes the wireless communications industry highly competitive. Thus internet service providers (ISPs) must ensure that their efforts are targeted towards attracting and retaining customers to ensure continued growth. As Web 2.0 has gained traction and more tools have become available, customers in recent times are equipped to make well-informed decisions, specifically due to the colossal information available in online reviews. ISPs can use this information to better understand the views of the customers about their products and services. The goal of this paper is to identify the current strengths, weaknesses, opportunities, and threats (SWOT) of each ISP by exploring consumer reviews using text analytics. The proposed approach consists of four different stages: bigram and trigram analyses, topic identification, SWOT analysis and Root Cause Analysis (RCA). For each ISP, we first categorize online reviews into positive and negative based on customer ratings and then leverage text analytic tools to determine the most frequently used and co-occurring words in each categorization of reviews. Subsequently, looking at the positive and negative topics in each ISP, we conduct the SWOT analysis as well as the RCA to help companies identify the internal and external factors impacting customer satisfaction. We use a case study to illustrate the proposed approach. The proposed managerial insights that are derived from the results can act as a decision support tool for ISPs to offer better products and services for their customers.

  Access Paper or Ask Questions

Priberam at MESINESP Multi-label Classification of Medical Texts Task

May 12, 2021
Ruben Cardoso, Zita Marinho, Afonso Mendes, Sebastião Miranda

Medical articles provide current state of the art treatments and diagnostics to many medical practitioners and professionals. Existing public databases such as MEDLINE contain over 27 million articles, making it difficult to extract relevant content without the use of efficient search engines. Information retrieval tools are crucial in order to navigate and provide meaningful recommendations for articles and treatments. Classifying these articles into broader medical topics can improve the retrieval of related articles. The set of medical labels considered for the MESINESP task is on the order of several thousands of labels (DeCS codes), which falls under the extreme multi-label classification problem. The heterogeneous and highly hierarchical structure of medical topics makes the task of manually classifying articles extremely laborious and costly. It is, therefore, crucial to automate the process of classification. Typical machine learning algorithms become computationally demanding with such a large number of labels and achieving better recall on such datasets becomes an unsolved problem. This work presents Priberam's participation at the BioASQ task Mesinesp. We address the large multi-label classification problem through the use of four different models: a Support Vector Machine (SVM), a customised search engine (Priberam Search), a BERT based classifier, and a SVM-rank ensemble of all the previous models. Results demonstrate that all three individual models perform well and the best performance is achieved by their ensemble, granting Priberam the 6th place in the present challenge and making it the 2nd best team.

* Presented at CLEF2020 conference (2020) 

  Access Paper or Ask Questions

Feature Extraction for Hyperspectral Imagery: The Evolution from Shallow to Deep

Mar 05, 2020
Behnood Rasti, Danfeng Hong, Renlong Hang, Pedram Ghamisi, Xudong Kang, Jocelyn Chanussot, Jon Atli Benediktsson

Hyperspectral images provide detailed spectral information through hundreds of (narrow) spectral channels (also known as dimensionality or bands) with continuous spectral information that can accurately classify diverse materials of interest. The increased dimensionality of such data makes it possible to significantly improve data information content but provides a challenge to the conventional techniques (the so-called curse of dimensionality) for accurate analysis of hyperspectral images. Feature extraction, as a vibrant field of research in the hyperspectral community, evolved through decades of research to address this issue and extract informative features suitable for data representation and classification. The advances in feature extraction have been inspired by two fields of research, including the popularization of image and signal processing as well as machine (deep) learning, leading to two types of feature extraction approaches named shallow and deep techniques. This article outlines the advances in feature extraction approaches for hyperspectral imagery by providing a technical overview of the state-of-the-art techniques, providing useful entry points for researchers at different levels, including students, researchers, and senior researchers, willing to explore novel investigations on this challenging topic. % by supplying a rich amount of detail and references. In more detail, this paper provides a bird's eye view over shallow (both supervised and unsupervised) and deep feature extraction approaches specifically dedicated to the topic of hyperspectral feature extraction and its application on hyperspectral image classification. Additionally, this paper compares 15 advanced techniques with an emphasis on their methodological foundations in terms of classification accuracies.

  Access Paper or Ask Questions

Multi-level computational methods for interdisciplinary research in the HathiTrust Digital Library

Jun 08, 2017
Jaimie Murdock, Colin Allen, Katy Börner, Robert Light, Simon McAlister, Andrew Ravenscroft, Robert Rose, Doori Rose, Jun Otsuka, David Bourget, John Lawrence, Chris Reed

We show how faceted search using a combination of traditional classification systems and mixed-membership topic models can go beyond keyword search to inform resource discovery, hypothesis formulation, and argument extraction for interdisciplinary research. Our test domain is the history and philosophy of scientific work on animal mind and cognition. The methods can be generalized to other research areas and ultimately support a system for semi-automatic identification of argument structures. We provide a case study for the application of the methods to the problem of identifying and extracting arguments about anthropomorphism during a critical period in the development of comparative psychology. We show how a combination of classification systems and mixed-membership models trained over large digital libraries can inform resource discovery in this domain. Through a novel approach of "drill-down" topic modeling---simultaneously reducing both the size of the corpus and the unit of analysis---we are able to reduce a large collection of fulltext volumes to a much smaller set of pages within six focal volumes containing arguments of interest to historians and philosophers of comparative psychology. The volumes identified in this way did not appear among the first ten results of the keyword search in the HathiTrust digital library and the pages bear the kind of "close reading" needed to generate original interpretations that is the heart of scholarly work in the humanities. Zooming back out, we provide a way to place the books onto a map of science originally constructed from very different data and for different purposes. The multilevel approach advances understanding of the intellectual and societal contexts in which writings are interpreted.

* revised, 29 pages, 3 figures 

  Access Paper or Ask Questions

Exploration and Exploitation of Victorian Science in Darwin's Reading Notebooks

Feb 02, 2017
Jaimie Murdock, Colin Allen, Simon DeDeo

Search in an environment with an uncertain distribution of resources involves a trade-off between exploitation of past discoveries and further exploration. This extends to information foraging, where a knowledge-seeker shifts between reading in depth and studying new domains. To study this decision-making process, we examine the reading choices made by one of the most celebrated scientists of the modern era: Charles Darwin. From the full-text of books listed in his chronologically-organized reading journals, we generate topic models to quantify his local (text-to-text) and global (text-to-past) reading decisions using Kullback-Liebler Divergence, a cognitively-validated, information-theoretic measure of relative surprise. Rather than a pattern of surprise-minimization, corresponding to a pure exploitation strategy, Darwin's behavior shifts from early exploitation to later exploration, seeking unusually high levels of cognitive surprise relative to previous eras. These shifts, detected by an unsupervised Bayesian model, correlate with major intellectual epochs of his career as identified both by qualitative scholarship and Darwin's own self-commentary. Our methods allow us to compare his consumption of texts with their publication order. We find Darwin's consumption more exploratory than the culture's production, suggesting that underneath gradual societal changes are the explorations of individual synthesis and discovery. Our quantitative methods advance the study of cognitive search through a framework for testing interactions between individual and collective behavior and between short- and long-term consumption choices. This novel application of topic modeling to characterize individual reading complements widespread studies of collective scientific behavior.

* Cognition 159 (2017) 117-126 
* Cognition pre-print, published February 2017; 22 pages, plus 17 pages supporting information, 7 pages references 

  Access Paper or Ask Questions

Structural invariants and semantic fingerprints in the "ego network" of words

Mar 01, 2022
Kilian Ollivier, Chiara Boldrini, Andrea Passarella, Marco Conti

Well-established cognitive models coming from anthropology have shown that, due to the cognitive constraints that limit our "bandwidth" for social interactions, humans organize their social relations according to a regular structure. In this work, we postulate that similar regularities can be found in other cognitive processes, such as those involving language production. In order to investigate this claim, we analyse a dataset containing tweets of a heterogeneous group of Twitter users (regular users and professional writers). Leveraging a methodology similar to the one used to uncover the well-established social cognitive constraints, we find regularities at both the structural and semantic level. At the former, we find that a concentric layered structure (which we call ego network of words, in analogy to the ego network of social relationships) very well captures how individuals organise the words they use. The size of the layers in this structure regularly grows (approximately 2-3 times with respect to the previous one) when moving outwards, and the two penultimate external layers consistently account for approximately 60% and 30% of the used words, irrespective of the number of the total number of layers of the user. For the semantic analysis, each ring of each ego network is described by a semantic profile, which captures the topics associated with the words in the ring. We find that ring #1 has a special role in the model. It is semantically the most dissimilar and the most diverse among the rings. We also show that the topics that are important in the innermost ring also have the characteristic of being predominant in each of the other rings, as well as in the entire ego network. In this respect, ring #1 can be seen as the semantic fingerprint of the ego network of words.

* This work was partially funded by the H2020 SoBigData++ (Grant No 871042), H2020 HumaneAI-Net (Grant No 952026), and CHIST-ERA SAI (Grant No not yet available) projects. arXiv admin note: text overlap with arXiv:2110.06015 

  Access Paper or Ask Questions

A Comparative Study on Transfer Learning and Distance Metrics in Semantic Clustering over the COVID-19 Tweets

Nov 16, 2021
Elnaz Zafarani-Moattar, Mohammad Reza Kangavari, Amir Masoud Rahmani

This paper is a comparison study in the context of Topic Detection on COVID-19 data. There are various approaches for Topic Detection, among which the Clustering approach is selected in this paper. Clustering requires distance and calculating distance needs embedding. The aim of this research is to simultaneously study the three factors of embedding methods, distance metrics and clustering methods and their interaction. A dataset including one-month tweets collected with COVID-19-related hashtags is used for this study. Five methods, from earlier to new methods, are selected among the embedding methods: Word2Vec, fastText, GloVe, BERT and T5. Five clustering methods are investigated in this paper that are: k-means, DBSCAN, OPTICS, spectral and Jarvis-Patrick. Euclidian distance and Cosine distance as the most important distance metrics in this field are also examined. First, more than 7,500 tests are performed to tune the parameters. Then, all the different combinations of embedding methods with distance metrics and clustering methods are investigated by silhouette metric. The number of these combinations is 50 cases. First, the results of these 50 tests are examined. Then, the rank of each method is taken into account in all the tests of that method. Finally, the major variables of the research (embedding methods, distance metrics and clustering methods) are studied separately. Averaging is performed over the control variables to neutralize their effect. The experimental results show that T5 strongly outperforms other embedding methods in terms of silhouette metric. In terms of distance metrics, cosine distance is weakly better. DBSCAN is also superior to other methods in terms of clustering methods.

  Access Paper or Ask Questions

A Practical Blockchain Framework using Image Hashing for Image Authentication

Apr 15, 2020
Cameron White, Manoranjan Paul, Subrata Chakraborty

Blockchain is a relatively new technology that can be seen as a decentralised database. Blockchain systems heavily rely on cryptographic hash functions to store their data, which makes it difficult to tamper with any data stored in the system. A topic that was researched along with blockchain is image authentication. Image authentication focuses on investigating and maintaining the integrity of images. As a blockchain system can be useful for maintaining data integrity, image authentication has the potential to be enhanced by blockchain. There are many techniques that can be used to authenticate images; the technique investigated by this work is image hashing. Image hashing is a technique used to calculate how similar two different images are. This is done by converting the images into hashes and then comparing them using a distance formula. To investigate the topic, an experiment involving a simulated blockchain was created. The blockchain acted as a database for images. This blockchain was made up of devices which contained their own unique image hashing algorithms. The blockchain was tested by creating modified copies of the images contained in the database, and then submitting them to the blockchain to see if it will return the original image. Through this experiment it was discovered that it is plausible to create an image authentication system using blockchain and image hashing. However, the design proposed by this work requires refinement, as it appears to struggle in some situations. This work shows that blockchain can be a suitable approach for authenticating images, particularly via image hashing. Other observations include that using multiple image hash algorithms at the same time can increase performance in some cases, as well as that each type of test done to the blockchain has its own unique pattern to its data.

* This is un-published paper 

  Access Paper or Ask Questions