Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Topic": models, code, and papers

Entertaining and Opinionated but Too Controlling: A Large-Scale User Study of an Open Domain Alexa Prize System

Aug 13, 2019
Kevin K. Bowden, Jiaqi Wu, Wen Cui, Juraj Juraska, Vrindavan Harrison, Brian Schwarzmann, Nicholas Santer, Steve Whittaker, Marilyn Walker

Conversational systems typically focus on functional tasks such as scheduling appointments or creating todo lists. Instead we design and evaluate SlugBot (SB), one of 8 semifinalists in the 2018 AlexaPrize, whose goal is to support casual open-domain social inter-action. This novel application requires both broad topic coverage and engaging interactive skills. We developed a new technical approach to meet this demanding situation by crowd-sourcing novel content and introducing playful conversational strategies based on storytelling and games. We collected over 10,000 conversations during August 2018 as part of the Alexa Prize competition. We also conducted an in-lab follow-up qualitative evaluation. Over-all users found SB moderately engaging; conversations averaged 3.6 minutes and involved 26 user turns. However, users reacted very differently to different conversation subtypes. Storytelling and games were evaluated positively; these were seen as entertaining with predictable interactive structure. They also led users to impute personality and intelligence to SB. In contrast, search and general Chit-Chat induced coverage problems; here users found it hard to infer what topics SB could understand, with these conversations seen as being too system-driven. Theoretical and design implications suggest a move away from conversational systems that simply provide factual information. Future systems should be designed to have their own opinions with personal stories to share, and SB provides an example of how we might achieve this.

* To appear in 1st International Conference on Conversational User Interfaces (CUI 2019) 

  Access Paper or Ask Questions

Conditional Variational Inference with Adaptive Truncation for Bayesian Nonparametric Models

Jan 13, 2020
Jones Yirui Liu, Xinghao Qiao

The scalable inference for Bayesian nonparametric models with big data is still challenging. Current variational inference methods fail to characterise the correlation structure among latent variables due to the mean-field setting and cannot infer the true posterior dimension because of the universal truncation. To overcome these limitations, we build a general framework to infer Bayesian nonparametric models by maximising the proposed nonparametric evidence lower bound, and then develop a novel approach by combining Monte Carlo sampling and stochastic variational inference framework. Our method has several advantages over the traditional online variational inference method. First, it achieves a smaller divergence between variational distributions and the true posterior by factorising variational distributions under the conditional setting instead of the mean-field setting to capture the correlation pattern. Second, it reduces the risk of underfitting or overfitting by truncating the dimension adaptively rather than using a prespecified truncated dimension for all latent variables. Third, it reduces the computational complexity by approximating the posterior functionally instead of updating the stick-breaking parameters individually. We apply the proposed method on hierarchical Dirichlet process and gamma--Dirichlet process models, two essential Bayesian nonparametric models in topic analysis. The empirical study on three large datasets including arXiv, New York Times and Wikipedia reveals that our proposed method substantially outperforms its competitor in terms of lower perplexity and much clearer topic-words clustering.


  Access Paper or Ask Questions

Prior Information Guided Regularized Deep Learning for Cell Nucleus Detection

Jan 21, 2019
Mohammad Tofighi, Tiantong Guo, Jairam K. P. Vanamala, Vishal Monga

Cell nuclei detection is a challenging research topic because of limitations in cellular image quality and diversity of nuclear morphology, i.e. varying nuclei shapes, sizes, and overlaps between multiple cell nuclei. This has been a topic of enduring interest with promising recent success shown by deep learning methods. These methods train Convolutional Neural Networks (CNNs) with a training set of input images and known, labeled nuclei locations. Many such methods are supplemented by spatial or morphological processing. Using a set of canonical cell nuclei shapes, prepared with the help of a domain expert, we develop a new approach that we call Shape Priors with Convolutional Neural Networks (SP-CNN). We further extend the network to introduce a shape prior (SP) layer and then allowing it to become trainable (i.e. optimizable). We call this network tunable SP-CNN (TSP-CNN). In summary, we present new network structures that can incorporate 'expected behavior' of nucleus shapes via two components: learnable layers that perform the nucleus detection and a fixed processing part that guides the learning with prior information. Analytically, we formulate two new regularization terms that are targeted at: 1) learning the shapes, 2) reducing false positives while simultaneously encouraging detection inside the cell nucleus boundary. Experimental results on two challenging datasets reveal that the proposed SP-CNN and TSP-CNN can outperform state-of-the-art alternatives.

* IEEE Transactions on Medical Imaging, January 2019 
* Accepted for Publication 

  Access Paper or Ask Questions

A Comparison of Approaches for Imbalanced Classification Problems in the Context of Retrieving Relevant Documents for an Analysis

May 03, 2022
Sandra Wankmüller

One of the first steps in many text-based social science studies is to retrieve documents that are relevant for the analysis from large corpora of otherwise irrelevant documents. The conventional approach in social science to address this retrieval task is to apply a set of keywords and to consider those documents to be relevant that contain at least one of the keywords. But the application of incomplete keyword lists risks drawing biased inferences. More complex and costly methods such as query expansion techniques, topic model-based classification rules, and active as well as passive supervised learning could have the potential to more accurately separate relevant from irrelevant documents and thereby reduce the potential size of bias. Yet, whether applying these more expensive approaches increases retrieval performance compared to keyword lists at all, and if so, by how much, is unclear as a comparison of these approaches is lacking. This study closes this gap by comparing these methods across three retrieval tasks associated with a data set of German tweets (Linder, 2017), the Social Bias Inference Corpus (SBIC) (Sap et al., 2020), and the Reuters-21578 corpus (Lewis, 1997). Results show that query expansion techniques and topic model-based classification rules in most studied settings tend to decrease rather than increase retrieval performance. Active supervised learning, however, if applied on a not too small set of labeled training instances (e.g. 1,000 documents), reaches a substantially higher retrieval performance than keyword lists.

* 78 pages, 17 figures, 9 tables 

  Access Paper or Ask Questions

The Potential of Using Vision Videos for CrowdRE: Video Comments as a Source of Feedback

Aug 04, 2021
Oliver Karras, Eklekta Kristo, Jil Klünder

Vision videos are established for soliciting feedback and stimulating discussions in requirements engineering (RE) practices, such as focus groups. Different researchers motivated the transfer of these benefits into crowd-based RE (CrowdRE) by using vision videos on social media platforms. So far, however, little research explored the potential of using vision videos for CrowdRE in detail. In this paper, we analyze and assess this potential, in particular, focusing on video comments as a source of feedback. In a case study, we analyzed 4505 comments on a vision video from YouTube. We found that the video solicited 2770 comments from 2660 viewers in four days. This is more than 50% of all comments the video received in four years. Even though only a certain fraction of these comments are relevant to RE, the relevant comments address typical intentions and topics of user feedback, such as feature request or problem report. Besides the typical user feedback categories, we found more than 300 comments that address the topic safety, which has not appeared in previous analyses of user feedback. In an automated analysis, we compared the performance of three machine learning algorithms on classifying the video comments. Despite certain differences, the algorithms classified the video comments well. Based on these findings, we conclude that the use of vision videos for CrowdRE has a large potential. Despite the preliminary nature of the case study, we are optimistic that vision videos can motivate stakeholders to actively participate in a crowd and solicit numerous of video comments as a valuable source of feedback.

* Accepted for publication at 2021 IEEE 29th International Requirements Engineering Conference Workshops (REW) 

  Access Paper or Ask Questions

How to Certify Machine Learning Based Safety-critical Systems? A Systematic Literature Review

Aug 03, 2021
Florian Tambon, Gabriel Laberge, Le An, Amin Nikanjam, Paulina Stevia Nouwou Mindom, Yann Pequignot, Foutse Khomh, Giulio Antoniol, Ettore Merlo, François Laviolette

Context: Machine Learning (ML) has been at the heart of many innovations over the past years. However, including it in so-called 'safety-critical' systems such as automotive or aeronautic has proven to be very challenging, since the shift in paradigm that ML brings completely changes traditional certification approaches. Objective: This paper aims to elucidate challenges related to the certification of ML-based safety-critical systems, as well as the solutions that are proposed in the literature to tackle them, answering the question 'How to Certify Machine Learning Based Safety-critical Systems?'. Method: We conduct a Systematic Literature Review (SLR) of research papers published between 2015 to 2020, covering topics related to the certification of ML systems. In total, we identified 217 papers covering topics considered to be the main pillars of ML certification: Robustness, Uncertainty, Explainability, Verification, Safe Reinforcement Learning, and Direct Certification. We analyzed the main trends and problems of each sub-field and provided summaries of the papers extracted. Results: The SLR results highlighted the enthusiasm of the community for this subject, as well as the lack of diversity in terms of datasets and type of models. It also emphasized the need to further develop connections between academia and industries to deepen the domain study. Finally, it also illustrated the necessity to build connections between the above mention main pillars that are for now mainly studied separately. Conclusion: We highlighted current efforts deployed to enable the certification of ML based software systems, and discuss some future research directions.

* 72 pages (90 pages with ref.), submitted to a journal (Automated Software Engineering. Changes: Adding final control quality questions process of systematic literature review, adding minor changes 

  Access Paper or Ask Questions

Benchmarking Zero-shot Text Classification: Datasets, Evaluation and Entailment Approach

Aug 31, 2019
Wenpeng Yin, Jamaal Hay, Dan Roth

Zero-shot text classification (0Shot-TC) is a challenging NLU problem to which little attention has been paid by the research community. 0Shot-TC aims to associate an appropriate label with a piece of text, irrespective of the text domain and the aspect (e.g., topic, emotion, event, etc.) described by the label. And there are only a few articles studying 0Shot-TC, all focusing only on topical categorization which, we argue, is just the tip of the iceberg in 0Shot-TC. In addition, the chaotic experiments in literature make no uniform comparison, which blurs the progress. This work benchmarks the 0Shot-TC problem by providing unified datasets, standardized evaluations, and state-of-the-art baselines. Our contributions include: i) The datasets we provide facilitate studying 0Shot-TC relative to conceptually different and diverse aspects: the ``topic'' aspect includes ``sports'' and ``politics'' as labels; the ``emotion'' aspect includes ``joy'' and ``anger''; the ``situation'' aspect includes ``medical assistance'' and ``water shortage''. ii) We extend the existing evaluation setup (label-partially-unseen) -- given a dataset, train on some labels, test on all labels -- to include a more challenging yet realistic evaluation label-fully-unseen 0Shot-TC (Chang et al., 2008), aiming at classifying text snippets without seeing task specific training data at all. iii) We unify the 0Shot-TC of diverse aspects within a textual entailment formulation and study it this way. Code & Data: https://github.com/yinwenpeng/BenchmarkingZeroShot

* EMNLP2019 camera-ready, 10 pages 

  Access Paper or Ask Questions

A Framework for Authorial Clustering of Shorter Texts in Latent Semantic Spaces

Nov 30, 2020
Rafi Trad, Myra Spiliopoulou

Authorial clustering involves the grouping of documents written by the same author or team of authors without any prior positive examples of an author's writing style or thematic preferences. For authorial clustering on shorter texts (paragraph-length texts that are typically shorter than conventional documents), the document representation is particularly important: very high-dimensional feature spaces lead to data sparsity and suffer from serious consequences like the curse of dimensionality, while feature selection may lead to information loss. We propose a high-level framework which utilizes a compact data representation in a latent feature space derived with non-parametric topic modeling. Authorial clusters are identified thereafter in two scenarios: (a) fully unsupervised and (b) semi-supervised where a small number of shorter texts are known to belong to the same author (must-link constraints) or not (cannot-link constraints). We report on experiments with 120 collections in three languages and two genres and show that the topic-based latent feature space provides a promising level of performance while reducing the dimensionality by a factor of 1500 compared to state-of-the-arts. We also demonstrate that, while prior knowledge on the precise number of authors (i.e. authorial clusters) does not contribute much to additional quality, little knowledge on constraints in authorial clusters memberships leads to clear performance improvements in front of this difficult task. Thorough experimentation with standard metrics indicates that there still remains an ample room for improvement for authorial clustering, especially with shorter texts

* 8 pages including references 

  Access Paper or Ask Questions

Visual Exploration and Knowledge Discovery from Biomedical Dark Data

Sep 28, 2020
Shashwat Aggarwal, Ramesh Singh

Data visualization techniques proffer efficient means to organize and present data in graphically appealing formats, which not only speeds up the process of decision making and pattern recognition but also enables decision-makers to fully understand data insights and make informed decisions. Over time, with the rise in technological and computational resources, there has been an exponential increase in the world's scientific knowledge. However, most of it lacks structure and cannot be easily categorized and imported into regular databases. This type of data is often termed as Dark Data. Data visualization techniques provide a promising solution to explore such data by allowing quick comprehension of information, the discovery of emerging trends, identification of relationships and patterns, etc. In this empirical research study, we use the rich corpus of PubMed comprising of more than 30 million citations from biomedical literature to visually explore and understand the underlying key-insights using various information visualization techniques. We employ a natural language processing based pipeline to discover knowledge out of the biomedical dark data. The pipeline comprises of different lexical analysis techniques like Topic Modeling to extract inherent topics and major focus areas, Network Graphs to study the relationships between various entities like scientific documents and journals, researchers, and, keywords and terms, etc. With this analytical research, we aim to proffer a potential solution to overcome the problem of analyzing overwhelming amounts of information and diminish the limitation of human cognition and perception in handling and examining such large volumes of data.


  Access Paper or Ask Questions

<<
149
150
151
152
153
154
155
156
157
158
159
160
161
>>