Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Topic": models, code, and papers

Recent Developments in Aerial Robotics: A Survey and Prototypes Overview

Nov 30, 2017
Chun Fui Liew, Danielle DeLatte, Naoya Takeishi, Takehisa Yairi

In recent years, research and development in aerial robotics (i.e., unmanned aerial vehicles, UAVs) has been growing at an unprecedented speed, and there is a need to summarize the background, latest developments, and trends of UAV research. Along with a general overview on the definition, types, categories, and topics of UAV, this work describes a systematic way to identify 1,318 high-quality UAV papers from more than thirty thousand that have been appeared in the top journals and conferences. On top of that, we provide a bird's-eye view of UAV research since 2001 by summarizing various statistical information, such as the year, type, and topic distribution of the UAV papers. We make our survey list public and believe that the list can not only help researchers identify, study, and compare their work, but is also useful for understanding research trends in the field. From our survey results, we find there are many types of UAV, and to the best of our knowledge, no literature has attempted to summarize all types in one place. With our survey list, we explain the types within our survey and outline the recent progress of each. We believe this summary can enhance readers' understanding on the UAVs and inspire researchers to propose new methods and new applications.

* 14 pages, 16 figures, typos corrected 

  Access Paper or Ask Questions

Towards Bayesian Deep Learning: A Framework and Some Existing Methods

Sep 03, 2016
Hao Wang, Dit-Yan Yeung

While perception tasks such as visual object recognition and text understanding play an important role in human intelligence, the subsequent tasks that involve inference, reasoning and planning require an even higher level of intelligence. The past few years have seen major advances in many perception tasks using deep learning models. For higher-level inference, however, probabilistic graphical models with their Bayesian nature are still more powerful and flexible. To achieve integrated intelligence that involves both perception and inference, it is naturally desirable to tightly integrate deep learning and Bayesian models within a principled probabilistic framework, which we call Bayesian deep learning. In this unified framework, the perception of text or images using deep learning can boost the performance of higher-level inference and in return, the feedback from the inference process is able to enhance the perception of text or images. This paper proposes a general framework for Bayesian deep learning and reviews its recent applications on recommender systems, topic models, and control. In this paper, we also discuss the relationship and differences between Bayesian deep learning and other related topics like Bayesian treatment of neural networks.

* To appear in IEEE Transactions on Knowledge and Data Engineering (TKDE), 2016. This is a slightly shorter version of the survey arXiv:1604.01662 

  Access Paper or Ask Questions

Towards Bayesian Deep Learning: A Survey

Apr 07, 2016
Hao Wang, Dit-Yan Yeung

While perception tasks such as visual object recognition and text understanding play an important role in human intelligence, the subsequent tasks that involve inference, reasoning and planning require an even higher level of intelligence. The past few years have seen major advances in many perception tasks using deep learning models. For higher-level inference, however, probabilistic graphical models with their Bayesian nature are still more powerful and flexible. To achieve integrated intelligence that involves both perception and inference, it is naturally desirable to tightly integrate deep learning and Bayesian models within a principled probabilistic framework, which we call Bayesian deep learning. In this unified framework, the perception of text or images using deep learning can boost the performance of higher-level inference and in return, the feedback from the inference process is able to enhance the perception of text or images. This survey provides a general introduction to Bayesian deep learning and reviews its recent applications on recommender systems, topic models, and control. In this survey, we also discuss the relationship and differences between Bayesian deep learning and other related topics like Bayesian treatment of neural networks.


  Access Paper or Ask Questions

A Survey of the Trends in Facial and Expression Recognition Databases and Methods

Dec 05, 2015
Sohini Roychowdhury, Michelle Emmons

Automated facial identification and facial expression recognition have been topics of active research over the past few decades. Facial and expression recognition find applications in human-computer interfaces, subject tracking, real-time security surveillance systems and social networking. Several holistic and geometric methods have been developed to identify faces and expressions using public and local facial image databases. In this work we present the evolution in facial image data sets and the methodologies for facial identification and recognition of expressions such as anger, sadness, happiness, disgust, fear and surprise. We observe that most of the earlier methods for facial and expression recognition aimed at improving the recognition rates for facial feature-based methods using static images. However, the recent methodologies have shifted focus towards robust implementation of facial/expression recognition from large image databases that vary with space (gathered from the internet) and time (video recordings). The evolution trends in databases and methodologies for facial and expression recognition can be useful for assessing the next-generation topics that may have applications in security systems or personal identification systems that involve "Quantitative face" assessments.

* International Journal of Computer Science & Engineering Survey, 2015, 6, 1-19 
* 16 pages, 4 figures, 3 tables, International Journal of Computer Science and Engineering Survey, October, 2015 

  Access Paper or Ask Questions

Robust Dialogue State Tracking with Weak Supervision and Sparse Data

Feb 07, 2022
Michael Heck, Nurul Lubis, Carel van Niekerk, Shutong Feng, Christian Geishauser, Hsien-Chin Lin, Milica Gašić

Generalising dialogue state tracking (DST) to new data is especially challenging due to the strong reliance on abundant and fine-grained supervision during training. Sample sparsity, distributional shift and the occurrence of new concepts and topics frequently lead to severe performance degradation during inference. In this paper we propose a training strategy to build extractive DST models without the need for fine-grained manual span labels. Two novel input-level dropout methods mitigate the negative impact of sample sparsity. We propose a new model architecture with a unified encoder that supports value as well as slot independence by leveraging the attention mechanism. We combine the strengths of triple copy strategy DST and value matching to benefit from complementary predictions without violating the principle of ontology independence. Our experiments demonstrate that an extractive DST model can be trained without manual span labels. Our architecture and training strategies improve robustness towards sample sparsity, new concepts and topics, leading to state-of-the-art performance on a range of benchmarks. We further highlight our model's ability to effectively learn from non-dialogue data.

* 13 pages, 7 figures 

  Access Paper or Ask Questions

HieRec: Hierarchical User Interest Modeling for Personalized News Recommendation

Jun 08, 2021
Tao Qi, Fangzhao Wu, Chuhan Wu, Peiru Yang, Yang Yu, Xing Xie, Yongfeng Huang

User interest modeling is critical for personalized news recommendation. Existing news recommendation methods usually learn a single user embedding for each user from their previous behaviors to represent their overall interest. However, user interest is usually diverse and multi-grained, which is difficult to be accurately modeled by a single user embedding. In this paper, we propose a news recommendation method with hierarchical user interest modeling, named HieRec. Instead of a single user embedding, in our method each user is represented in a hierarchical interest tree to better capture their diverse and multi-grained interest in news. We use a three-level hierarchy to represent 1) overall user interest; 2) user interest in coarse-grained topics like sports; and 3) user interest in fine-grained topics like football. Moreover, we propose a hierarchical user interest matching framework to match candidate news with different levels of user interest for more accurate user interest targeting. Extensive experiments on two real-world datasets validate our method can effectively improve the performance of user modeling for personalized news recommendation.

* ACL 2021 

  Access Paper or Ask Questions

Scalable Cross-lingual Document Similarity through Language-specific Concept Hierarchies

Dec 15, 2020
Carlos Badenes-Olmedo, Jose-Luis Redondo García, Oscar Corcho

With the ongoing growth in number of digital articles in a wider set of languages and the expanding use of different languages, we need annotation methods that enable browsing multi-lingual corpora. Multilingual probabilistic topic models have recently emerged as a group of semi-supervised machine learning models that can be used to perform thematic explorations on collections of texts in multiple languages. However, these approaches require theme-aligned training data to create a language-independent space. This constraint limits the amount of scenarios that this technique can offer solutions to train and makes it difficult to scale up to situations where a huge collection of multi-lingual documents are required during the training phase. This paper presents an unsupervised document similarity algorithm that does not require parallel or comparable corpora, or any other type of translation resource. The algorithm annotates topics automatically created from documents in a single language with cross-lingual labels and describes documents by hierarchies of multi-lingual concepts from independently-trained models. Experiments performed on the English, Spanish and French editions of JCR-Acquis corpora reveal promising results on classifying and sorting documents by similar content.

* AACM Proceedings of the 10th International Conference on Knowledge Capture, pages = 147-153, K-CAP 19 (2020) 
* Accepted at the 10th International Conference on Knowledge Capture (K-CAP 2019) 

  Access Paper or Ask Questions

Minimally Supervised Categorization of Text with Metadata

Jun 02, 2020
Yu Zhang, Yu Meng, Jiaxin Huang, Frank F. Xu, Xuan Wang, Jiawei Han

Document categorization, which aims to assign a topic label to each document, plays a fundamental role in a wide variety of applications. Despite the success of existing studies in conventional supervised document classification, they are less concerned with two real problems: (1) \textit{the presence of metadata}: in many domains, text is accompanied by various additional information such as authors and tags. Such metadata serve as compelling topic indicators and should be leveraged into the categorization framework; (2) \textit{label scarcity}: labeled training samples are expensive to obtain in some cases, where categorization needs to be performed using only a small set of annotated data. In recognition of these two challenges, we propose \textsc{MetaCat}, a minimally supervised framework to categorize text with metadata. Specifically, we develop a generative process describing the relationships between words, documents, labels, and metadata. Guided by the generative model, we embed text and metadata into the same semantic space to encode heterogeneous signals. Then, based on the same generative process, we synthesize training samples to address the bottleneck of label scarcity. We conduct a thorough evaluation on a wide range of datasets. Experimental results prove the effectiveness of \textsc{MetaCat} over many competitive baselines.

* 10 pages; Accepted to SIGIR 2020 

  Access Paper or Ask Questions

Indirect Identification of Psychosocial Risks from Natural Language

Apr 30, 2020
Kristen C. Allen, Alex Davis, Tamar Krishnamurti

During the perinatal period, psychosocial health risks, including depression and intimate partner violence, are associated with serious adverse health outcomes for parents and children. To appropriately intervene, healthcare professionals must first identify those at risk, yet stigma often prevents people from directly disclosing the information needed to prompt an assessment. We examine indirect methods of eliciting and analyzing information that could indicate psychosocial risks. Short diary entries by peripartum women exhibit thematic patterns, extracted by topic modeling, and emotional perspective, drawn from dictionary-informed sentiment features. Using these features, we use regularized regression to predict screening measures of depression and psychological aggression by an intimate partner. Journal text entries quantified through topic models and sentiment features show promise for depression prediction, with performance almost as good as closed-form questions. Text-based features were less useful for prediction of intimate partner violence, but moderately indirect multiple-choice questioning allowed for detection without explicit disclosure. Both methods may serve as an initial or complementary screening approach to detecting stigmatized risks.

* 12 pages, 4 figures 

  Access Paper or Ask Questions

<<
134
135
136
137
138
139
140
141
142
143
144
145
146
>>