Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Topic": models, code, and papers

Syntactic Recurrent Neural Network for Authorship Attribution

Feb 27, 2019
Fereshteh Jafariakinabad, Sansiri Tarnpradab, Kien A. Hua

Writing style is a combination of consistent decisions at different levels of language production including lexical, syntactic, and structural associated to a specific author (or author groups). While lexical-based models have been widely explored in style-based text classification, relying on content makes the model less scalable when dealing with heterogeneous data comprised of various topics. On the other hand, syntactic models which are content-independent, are more robust against topic variance. In this paper, we introduce a syntactic recurrent neural network to encode the syntactic patterns of a document in a hierarchical structure. The model first learns the syntactic representation of sentences from the sequence of part-of-speech tags. For this purpose, we exploit both convolutional filters and long short-term memories to investigate the short-term and long-term dependencies of part-of-speech tags in the sentences. Subsequently, the syntactic representations of sentences are aggregated into document representation using recurrent neural networks. Our experimental results on PAN 2012 dataset for authorship attribution task shows that syntactic recurrent neural network outperforms the lexical model with the identical architecture by approximately 14% in terms of accuracy.


  Access Paper or Ask Questions

The ubiquitous digital file: A review of file management research

Sep 20, 2021
Jesse David Dinneen, Charles-Antoine Julien

Computer users spend time every day interacting with digital files and folders, including downloading, moving, naming, navigating to, searching for, sharing, and deleting them. Such file management has been the focus of many studies across various fields, but has not been explicitly acknowledged nor made the focus of dedicated review. In this article we present the first dedicated review of this topic and its research, synthesizing more than 230 publications from various research domains to establish what is known and what remains to be investigated, particularly by examining the common motivations, methods, and findings evinced by the previously furcate body of work. We find three typical research motivations in the literature reviewed: understanding how and why users store, organize, retrieve, and share files and folders, understanding factors that determine their behavior, and attempting to improve the user experience through novel interfaces and information services. Relevant conceptual frameworks and approaches to designing and testing systems are described, and open research challenges and the significance for other research areas are discussed. We conclude that file management is a ubiquitous, challenging, and relatively unsupported activity that invites and has received attention from several disciplines and has broad importance for topics across information science.

* Journal of the Association for Information Science and Technology, 71(1), E1-E32. Wiley (2020) 
* Final version at https://doi.org/10.1002/asi.24222 

  Access Paper or Ask Questions

The Graph Neural Networking Challenge: A Worldwide Competition for Education in AI/ML for Networks

Jul 26, 2021
José Suárez-Varela, Miquel Ferriol-Galmés, Albert López, Paul Almasan, Guillermo Bernárdez, David Pujol-Perich, Krzysztof Rusek, Loïck Bonniot, Christoph Neumann, François Schnitzler, François Taïani, Martin Happ, Christian Maier, Jia Lei Du, Matthias Herlich, Peter Dorfinger, Nick Vincent Hainke, Stefan Venz, Johannes Wegener, Henrike Wissing, Bo Wu, Shihan Xiao, Pere Barlet-Ros, Albert Cabellos-Aparicio

During the last decade, Machine Learning (ML) has increasingly become a hot topic in the field of Computer Networks and is expected to be gradually adopted for a plethora of control, monitoring and management tasks in real-world deployments. This poses the need to count on new generations of students, researchers and practitioners with a solid background in ML applied to networks. During 2020, the International Telecommunication Union (ITU) has organized the "ITU AI/ML in 5G challenge'', an open global competition that has introduced to a broad audience some of the current main challenges in ML for networks. This large-scale initiative has gathered 23 different challenges proposed by network operators, equipment manufacturers and academia, and has attracted a total of 1300+ participants from 60+ countries. This paper narrates our experience organizing one of the proposed challenges: the "Graph Neural Networking Challenge 2020''. We describe the problem presented to participants, the tools and resources provided, some organization aspects and participation statistics, an outline of the top-3 awarded solutions, and a summary with some lessons learned during all this journey. As a result, this challenge leaves a curated set of educational resources openly available to anyone interested in the topic.

* ACM SIGCOMM Computer Communication Review, Vol. 51, No. 3, pp. 9-16, 2021 

  Access Paper or Ask Questions

L2RS: A Learning-to-Rescore Mechanism for Automatic Speech Recognition

Oct 25, 2019
Yuanfeng Song, Di Jiang, Xuefang Zhao, Qian Xu, Raymond Chi-Wing Wong, Lixin Fan, Qiang Yang

Modern Automatic Speech Recognition (ASR) systems primarily rely on scores from an Acoustic Model (AM) and a Language Model (LM) to rescore the N-best lists. With the abundance of recent natural language processing advances, the information utilized by current ASR for evaluating the linguistic and semantic legitimacy of the N-best hypotheses is rather limited. In this paper, we propose a novel Learning-to-Rescore (L2RS) mechanism, which is specialized for utilizing a wide range of textual information from the state-of-the-art NLP models and automatically deciding their weights to rescore the N-best lists for ASR systems. Specifically, we incorporate features including BERT sentence embedding, topic vector, and perplexity scores produced by n-gram LM, topic modeling LM, BERT LM and RNNLM to train a rescoring model. We conduct extensive experiments based on a public dataset, and experimental results show that L2RS outperforms not only traditional rescoring methods but also its deep neural network counterparts by a substantial improvement of 20.67% in terms of [email protected] L2RS paves the way for developing more effective rescoring models for ASR.

* 5 pages, 3 figures 

  Access Paper or Ask Questions

Characterizing Transgender Health Issues in Twitter

Sep 28, 2018
Amir Karami, Frank Webb, Vanessa L. Kitzie

Although there are millions of transgender people in the world, a lack of information exists about their health issues. This issue has consequences for the medical field, which only has a nascent understanding of how to identify and meet this population's health-related needs. Social media sites like Twitter provide new opportunities for transgender people to overcome these barriers by sharing their personal health experiences. Our research employs a computational framework to collect tweets from self-identified transgender users, detect those that are health-related, and identify their information needs. This framework is significant because it provides a macro-scale perspective on an issue that lacks investigation at national or demographic levels. Our findings identified 54 distinct health-related topics that we grouped into 7 broader categories. Further, we found both linguistic and topical differences in the health-related information shared by transgender men (TM) as com-pared to transgender women (TW). These findings can help inform medical and policy-based strategies for health interventions within transgender communities. Also, our proposed approach can inform the development of computational strategies to identify the health-related information needs of other marginalized populations.


  Access Paper or Ask Questions

Maximum Volume Inscribed Ellipsoid: A New Simplex-Structured Matrix Factorization Framework via Facet Enumeration and Convex Optimization

Jun 21, 2018
Chia-Hsiang Lin, Ruiyuan Wu, Wing-Kin Ma, Chong-Yung Chi, Yue Wang

Consider a structured matrix factorization model where one factor is restricted to have its columns lying in the unit simplex. This simplex-structured matrix factorization (SSMF) model and the associated factorization techniques have spurred much interest in research topics over different areas, such as hyperspectral unmixing in remote sensing, topic discovery in machine learning, to name a few. In this paper we develop a new theoretical SSMF framework whose idea is to study a maximum volume ellipsoid inscribed in the convex hull of the data points. This maximum volume inscribed ellipsoid (MVIE) idea has not been attempted in prior literature, and we show a sufficient condition under which the MVIE framework guarantees exact recovery of the factors. The sufficient recovery condition we show for MVIE is much more relaxed than that of separable non-negative matrix factorization (or pure-pixel search); coincidentally it is also identical to that of minimum volume enclosing simplex, which is known to be a powerful SSMF framework for non-separable problem instances. We also show that MVIE can be practically implemented by performing facet enumeration and then by solving a convex optimization problem. The potential of the MVIE framework is illustrated by numerical results.


  Access Paper or Ask Questions

Comparative Opinion Mining: A Review

Dec 24, 2017
Kasturi Dewi Varathan, Anastasia Giachanou, Fabio Crestani

Opinion mining refers to the use of natural language processing, text analysis and computational linguistics to identify and extract subjective information in textual material. Opinion mining, also known as sentiment analysis, has received a lot of attention in recent times, as it provides a number of tools to analyse the public opinion on a number of different topics. Comparative opinion mining is a subfield of opinion mining that deals with identifying and extracting information that is expressed in a comparative form (e.g.~"paper X is better than the Y"). Comparative opinion mining plays a very important role when ones tries to evaluate something, as it provides a reference point for the comparison. This paper provides a review of the area of comparative opinion mining. It is the first review that cover specifically this topic as all previous reviews dealt mostly with general opinion mining. This survey covers comparative opinion mining from two different angles. One from perspective of techniques and the other from perspective of comparative opinion elements. It also incorporates preprocessing tools as well as dataset that were used by the past researchers that can be useful to the future researchers in the field of comparative opinion mining.

* Journal of the Association for Information Science and Technology, 68(4), 2017 

  Access Paper or Ask Questions

Diagnostic Prediction Using Discomfort Drawings with IBTM

Sep 13, 2016
Cheng Zhang, Hedvig Kjellstrom, Carl Henrik Ek, Bo C. Bertilson

In this paper, we explore the possibility to apply machine learning to make diagnostic predictions using discomfort drawings. A discomfort drawing is an intuitive way for patients to express discomfort and pain related symptoms. These drawings have proven to be an effective method to collect patient data and make diagnostic decisions in real-life practice. A dataset from real-world patient cases is collected for which medical experts provide diagnostic labels. Next, we use a factorized multimodal topic model, Inter-Battery Topic Model (IBTM), to train a system that can make diagnostic predictions given an unseen discomfort drawing. The number of output diagnostic labels is determined by using mean-shift clustering on the discomfort drawing. Experimental results show reasonable predictions of diagnostic labels given an unseen discomfort drawing. Additionally, we generate synthetic discomfort drawings with IBTM given a diagnostic label, which results in typical cases of symptoms. The positive result indicates a significant potential of machine learning to be used for parts of the pain diagnostic process and to be a decision support system for physicians and other health care personnel.

* Presented at 2016 Machine Learning and Healthcare Conference (MLHC 2016), Los Angeles, CA 

  Access Paper or Ask Questions

Real-Time Classification of Twitter Trends

Mar 06, 2014
Arkaitz Zubiaga, Damiano Spina, Raquel MartĂ­nez, VĂ­ctor Fresno

Social media users give rise to social trends as they share about common interests, which can be triggered by different reasons. In this work, we explore the types of triggers that spark trends on Twitter, introducing a typology with following four types: 'news', 'ongoing events', 'memes', and 'commemoratives'. While previous research has analyzed trending topics in a long term, we look at the earliest tweets that produce a trend, with the aim of categorizing trends early on. This would allow to provide a filtered subset of trends to end users. We analyze and experiment with a set of straightforward language-independent features based on the social spread of trends to categorize them into the introduced typology. Our method provides an efficient way to accurately categorize trending topics without need of external data, enabling news organizations to discover breaking news in real-time, or to quickly identify viral memes that might enrich marketing decisions, among others. The analysis of social features also reveals patterns associated with each type of trend, such as tweets about ongoing events being shorter as many were likely sent from mobile devices, or memes having more retweets originating from a few trend-setters.

* Pre-print of article accepted for publication in Journal of the American Society for Information Science and Technology copyright @ 2013 (American Society for Information Science and Technology) 

  Access Paper or Ask Questions

Learning to Rank from Relevance Judgments Distributions

Feb 13, 2022
Alberto Purpura, Gianmaria Silvello, Gian Antonio Susto

Learning to Rank (LETOR) algorithms are usually trained on annotated corpora where a single relevance label is assigned to each available document-topic pair. Within the Cranfield framework, relevance labels result from merging either multiple expertly curated or crowdsourced human assessments. In this paper, we explore how to train LETOR models with relevance judgments distributions (either real or synthetically generated) assigned to document-topic pairs instead of single-valued relevance labels. We propose five new probabilistic loss functions to deal with the higher expressive power provided by relevance judgments distributions and show how they can be applied both to neural and GBM architectures. Moreover, we show how training a LETOR model on a sampled version of the relevance judgments from certain probability distributions can improve its performance when relying either on traditional or probabilistic loss functions. Finally, we validate our hypothesis on real-world crowdsourced relevance judgments distributions. Overall, we observe that relying on relevance judgments distributions to train different LETOR models can boost their performance and even outperform strong baselines such as LambdaMART on several test collections.


  Access Paper or Ask Questions

<<
133
134
135
136
137
138
139
140
141
142
143
144
145
>>