Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Topic": models, code, and papers

Mathematical Word Problem Generation from Commonsense Knowledge Graph and Equations

Oct 13, 2020
Tianqiao Liu, Qian Fang, Wenbiao Ding, Zhongqin Wu, Zitao Liu

There is an increasing interest in the use of automatic mathematical word problem (MWP) generation in educational assessment. Different from standard natural question generation, MWP generation needs to maintain the underlying mathematical operations between quantities and variables, while at the same time ensuring the relevance between the output and the given topic. To address above problem we develop an end-to-end neural model to generate personalized and diverse MWPs in real-world scenarios from commonsense knowledge graph and equations. The proposed model (1) learns both representations from edge-enhanced Levi graphs of symbolic equations and commonsense knowledge; (2) automatically fuses equation and commonsense knowledge information via a self-planning module when generating the MWPs. Experiments on an educational gold-standard set and a large-scale generated MWP set show that our approach is superior on the MWP generation task, and it outperforms the state-of-the-art models in terms of both automatic evaluation metrics, i.e., BLEU-4, ROUGE-L, Self-BLEU, and human evaluation metrics, i.e, equation relevance, topic relevance, and language coherence.

  Access Paper or Ask Questions

Deep Learning for LiDAR Point Clouds in Autonomous Driving: A Review

May 20, 2020
Ying Li, Lingfei Ma, Zilong Zhong, Fei Liu, Dongpu Cao, Jonathan Li, Michael A. Chapman

Recently, the advancement of deep learning in discriminative feature learning from 3D LiDAR data has led to rapid development in the field of autonomous driving. However, automated processing uneven, unstructured, noisy, and massive 3D point clouds is a challenging and tedious task. In this paper, we provide a systematic review of existing compelling deep learning architectures applied in LiDAR point clouds, detailing for specific tasks in autonomous driving such as segmentation, detection, and classification. Although several published research papers focus on specific topics in computer vision for autonomous vehicles, to date, no general survey on deep learning applied in LiDAR point clouds for autonomous vehicles exists. Thus, the goal of this paper is to narrow the gap in this topic. More than 140 key contributions in the recent five years are summarized in this survey, including the milestone 3D deep architectures, the remarkable deep learning applications in 3D semantic segmentation, object detection, and classification; specific datasets, evaluation metrics, and the state of the art performance. Finally, we conclude the remaining challenges and future researches.

* 21 pages, submitted to IEEE Transactions on Neural Networks and Learning Systems 

  Access Paper or Ask Questions

What do the US West Coast Public Libraries Post on Twitter?

Sep 28, 2018
Amir Karami, Matthew Collins

Twitter has provided a great opportunity for public libraries to disseminate information for a variety of purposes. Twitter data have been applied in different domains such as health, politics, and history. There are thousands of public libraries in the US, but no study has yet investigated the content of their social media posts like tweets to find their interests. Moreover, traditional content analysis of Twitter content is not an efficient task for exploring thousands of tweets. Therefore, there is a need for automatic methods to overcome the limitations of manual methods. This paper proposes a computational approach to collecting and analyzing using Twitter Application Programming Interfaces (API) and investigates more than 138,000 tweets from 48 US west coast libraries using topic modeling. We found 20 topics and assigned them to five categories including public relations, book, event, training, and social good. Our results show that the US west coast libraries are more interested in using Twitter for public relations and book-related events. This research has both practical and theoretical applications for libraries as well as other organizations to explore social media actives of their customer and themselves.

  Access Paper or Ask Questions

Contextual Language Model Adaptation for Conversational Agents

Jul 31, 2018
Anirudh Raju, Behnam Hedayatnia, Linda Liu, Ankur Gandhe, Chandra Khatri, Angeliki Metallinou, Anu Venkatesh, Ariya Rastrow

Statistical language models (LM) play a key role in Automatic Speech Recognition (ASR) systems used by conversational agents. These ASR systems should provide a high accuracy under a variety of speaking styles, domains, vocabulary and argots. In this paper, we present a DNN-based method to adapt the LM to each user-agent interaction based on generalized contextual information, by predicting an optimal, context-dependent set of LM interpolation weights. We show that this framework for contextual adaptation provides accuracy improvements under different possible mixture LM partitions that are relevant for both (1) Goal-oriented conversational agents where it's natural to partition the data by the requested application and for (2) Non-goal oriented conversational agents where the data can be partitioned using topic labels that come from predictions of a topic classifier. We obtain a relative WER improvement of 3% with a 1-pass decoding strategy and 6% in a 2-pass decoding framework, over an unadapted model. We also show up to a 15% relative improvement in recognizing named entities which is of significant value for conversational ASR systems.

* Interspeech 2018 (accepted) 

  Access Paper or Ask Questions

Taste or Addiction?: Using Play Logs to Infer Song Selection Motivation

May 26, 2017
Kosetsu Tsukuda, Masataka Goto

Online music services are increasing in popularity. They enable us to analyze people's music listening behavior based on play logs. Although it is known that people listen to music based on topic (e.g., rock or jazz), we assume that when a user is addicted to an artist, s/he chooses the artist's songs regardless of topic. Based on this assumption, in this paper, we propose a probabilistic model to analyze people's music listening behavior. Our main contributions are three-fold. First, to the best of our knowledge, this is the first study modeling music listening behavior by taking into account the influence of addiction to artists. Second, by using real-world datasets of play logs, we showed the effectiveness of our proposed model. Third, we carried out qualitative experiments and showed that taking addiction into account enables us to analyze music listening behavior from a new viewpoint in terms of how people listen to music according to the time of day, how an artist's songs are listened to by people, etc. We also discuss the possibility of applying the analysis results to applications such as artist similarity computation and song recommendation.

* Accepted by The 21st Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2017) 

  Access Paper or Ask Questions

Towards Theme Detection in Personal Finance Questions

Oct 04, 2021
John Xi Qiu, Adam Faulkner, Aysu Ezen Can

Banking call centers receive millions of calls annually, with much of the information in these calls unavailable to analysts interested in tracking new and emerging call center trends. In this study we present an approach to call center theme detection that captures the occurrence of multiple themes in a question, using a publicly available corpus of StackExchange personal finance questions, labeled by users with topic tags, as a testbed. To capture the occurrence of multiple themes in a single question, the approach encodes and clusters at the sentence- rather than question-level. We also present a comparison of state-of-the-art sentence encoding models, including the SBERT family of sentence encoders. We frame our evaluation as a multiclass classification task and show that a simple combination of the original sentence text, Universal Sentence Encoder, and KMeans outperforms more sophisticated techniques that involve semantic parsing, SBERT-family models, and HDBSCAN. Our highest performing approach achieves a Micro-F1 of 0.46 for this task and we show that the resulting clusters, even when slightly noisy, contain sentences that are topically consistent with the label associated with the cluster.

* Accepted to KDD-MLF 2021: ACM SIGKDD Workshop on Machine Learning in Finance 

  Access Paper or Ask Questions

Beyond a binary of (non)racist tweets: A four-dimensional categorical detection and analysis of racist and xenophobic opinions on Twitter in early Covid-19

Jul 18, 2021
Xin Pei, Deval Mehta

Transcending the binary categorization of racist and xenophobic texts, this research takes cues from social science theories to develop a four dimensional category for racism and xenophobia detection, namely stigmatization, offensiveness, blame, and exclusion. With the aid of deep learning techniques, this categorical detection enables insights into the nuances of emergent topics reflected in racist and xenophobic expression on Twitter. Moreover, a stage wise analysis is applied to capture the dynamic changes of the topics across the stages of early development of Covid-19 from a domestic epidemic to an international public health emergency, and later to a global pandemic. The main contributions of this research include, first the methodological advancement. By bridging the state-of-the-art computational methods with social science perspective, this research provides a meaningful approach for future research to gain insight into the underlying subtlety of racist and xenophobic discussion on digital platforms. Second, by enabling a more accurate comprehension and even prediction of public opinions and actions, this research paves the way for the enactment of effective intervention policies to combat racist crimes and social exclusion under Covid-19.

  Access Paper or Ask Questions

Online Paging with a Vanishing Regret

Nov 19, 2020
Yuval Emek, Shay Kutten, Yangguang Shi

This paper considers a variant of the online paging problem, where the online algorithm has access to multiple predictors, each producing a sequence of predictions for the page arrival times. The predictors may have occasional prediction errors and it is assumed that at least one of them makes a sublinear number of prediction errors in total. Our main result states that this assumption suffices for the design of a randomized online algorithm whose time-average regret with respect to the optimal offline algorithm tends to zero as the time tends to infinity. This holds (with different regret bounds) for both the full information access model, where in each round, the online algorithm gets the predictions of all predictors, and the bandit access model, where in each round, the online algorithm queries a single predictor. While online algorithms that exploit inaccurate predictions have been a topic of growing interest in the last few years, to the best of our knowledge, this is the first paper that studies this topic in the context of multiple predictors for an online problem with unbounded request sequences. Moreover, to the best of our knowledge, this is also the first paper that aims for (and achieves) online algorithms with a vanishing regret for a classic online problem under reasonable assumptions.

* 25 pages. An extended abstract of this paper is to appear in the 12th Innovations in Theoretical Computer Science conference (ITCS 2021) 

  Access Paper or Ask Questions

Generative Adversarial Networks in Human Emotion Synthesis:A Review

Nov 07, 2020
Noushin Hajarolasvadi, Miguel Arjona Ramírez, Hasan Demirel

Synthesizing realistic data samples is of great value for both academic and industrial communities. Deep generative models have become an emerging topic in various research areas like computer vision and signal processing. Affective computing, a topic of a broad interest in computer vision society, has been no exception and has benefited from generative models. In fact, affective computing observed a rapid derivation of generative models during the last two decades. Applications of such models include but are not limited to emotion recognition and classification, unimodal emotion synthesis, and cross-modal emotion synthesis. As a result, we conducted a review of recent advances in human emotion synthesis by studying available databases, advantages, and disadvantages of the generative models along with the related training strategies considering two principal human communication modalities, namely audio and video. In this context, facial expression synthesis, speech emotion synthesis, and the audio-visual (cross-modal) emotion synthesis is reviewed extensively under different application scenarios. Gradually, we discuss open research problems to push the boundaries of this research area for future works.

* 46 pages, 28 figures 

  Access Paper or Ask Questions