Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Topic": models, code, and papers

Naive Dictionary On Musical Corpora: From Knowledge Representation To Pattern Recognition

Nov 29, 2018
Qiuyi Wu, Ernest Fokoue

In this paper, we propose and develop the novel idea of treating musical sheets as literary documents in the traditional text analytics parlance, to fully benefit from the vast amount of research already existing in statistical text mining and topic modelling. We specifically introduce the idea of representing any given piece of music as a collection of "musical words" that we codenamed "muselets", which are essentially musical words of various lengths. Given the novelty and therefore the extremely difficulty of properly forming a complete version of a dictionary of muselets, the present paper focuses on a simpler albeit naive version of the ultimate dictionary, which we refer to as a Naive Dictionary because of the fact that all the words are of the same length. We specifically herein construct a naive dictionary featuring a corpus made up of African American, Chinese, Japanese and Arabic music, on which we perform both topic modelling and pattern recognition. Although some of the results based on the Naive Dictionary are reasonably good, we anticipate phenomenal predictive performances once we get around to actually building a full scale complete version of our intended dictionary of muselets.

* 25 pages 

  Access Paper or Ask Questions

Latent Dirichlet Allocation with Residual Convolutional Neural Network Applied in Evaluating Credibility of Chinese Listed Companies

Nov 24, 2018
Mohan Zhang, Zhichao Luo, Hai Lu

This project demonstrated a methodology to estimating cooperate credibility with a Natural Language Processing approach. As cooperate transparency impacts both the credibility and possible future earnings of the firm, it is an important factor to be considered by banks and investors on risk assessments of listed firms. This approach of estimating cooperate credibility can bypass human bias and inconsistency in the risk assessment, the use of large quantitative data and neural network models provides more accurate estimation in a more efficient manner compare to manual assessment. At the beginning, the model will employs Latent Dirichlet Allocation and THU Open Chinese Lexicon from Tsinghua University to classify topics in articles which are potentially related to corporate credibility. Then with the keywords related to each topics, we trained a residual convolutional neural network with data labeled according to surveys of fund manager and accountant's opinion on corporate credibility. After the training, we run the model with preprocessed news reports regarding to all of the 3065 listed companies, the model is supposed to give back companies ranking based on the level of their transparency.


  Access Paper or Ask Questions

Language Models that Seek for Knowledge: Modular Search & Generation for Dialogue and Prompt Completion

Mar 29, 2022
Kurt Shuster, Mojtaba Komeili, Leonard Adolphs, Stephen Roller, Arthur Szlam, Jason Weston

Language models (LMs) have recently been shown to generate more factual responses by employing modularity (Zhou et al., 2021) in combination with retrieval (Adolphs et al., 2021). We extend the recent approach of Adolphs et al. (2021) to include internet search as a module. Our SeeKeR (Search engine->Knowledge->Response) method thus applies a single LM to three modular tasks in succession: search, generating knowledge, and generating a final response. We show that, when using SeeKeR as a dialogue model, it outperforms the state-of-the-art model BlenderBot 2 (Chen et al., 2021) on open-domain knowledge-grounded conversations for the same number of parameters, in terms of consistency, knowledge and per-turn engagingness. SeeKeR applied to topical prompt completions as a standard language model outperforms GPT2 (Radford et al., 2019) and GPT3 (Brown et al., 2020) in terms of factuality and topicality, despite GPT3 being a vastly larger model. Our code and models are made publicly available.


  Access Paper or Ask Questions

High-level Prior-based Loss Functions for Medical Image Segmentation: A Survey

Nov 22, 2020
Rosana El Jurdi, Caroline Petitjean, Paul Honeine, Veronika Cheplygina, Fahed Abdallah

Today, deep convolutional neural networks (CNNs) have demonstrated state of the art performance for supervised medical image segmentation, across various imaging modalities and tasks. Despite early success, segmentation networks may still generate anatomically aberrant segmentations, with holes or inaccuracies near the object boundaries. To mitigate this effect, recent research works have focused on incorporating spatial information or prior knowledge to enforce anatomically plausible segmentation. If the integration of prior knowledge in image segmentation is not a new topic in classical optimization approaches, it is today an increasing trend in CNN based image segmentation, as shown by the growing literature on the topic. In this survey, we focus on high level prior, embedded at the loss function level. We categorize the articles according to the nature of the prior: the object shape, size, topology, and the inter-regions constraints. We highlight strengths and limitations of current approaches, discuss the challenge related to the design and the integration of prior-based losses, and the optimization strategies, and draw future research directions.


  Access Paper or Ask Questions

From Artificial Neural Networks to Deep Learning for Music Generation -- History, Concepts and Trends

Apr 07, 2020
Jean-Pierre Briot

The current tsunami of deep learning (the hyper-vitamined return of artificial neural networks) applies not only to traditional statistical machine learning tasks: prediction and classification (e.g., for weather prediction and pattern recognition), but has already conquered other areas, such as translation. A growing area of application is the generation of creative content: in particular the case of music, the topic of this paper. The motivation is in using the capacity of modern deep learning techniques to automatically learn musical styles from arbitrary musical corpora and then to generate musical samples from the estimated distribution, with some degree of control over the generation. This article provides a survey of music generation based on deep learning techniques. After a short introduction to the topic illustrated by a recent exemple, the article analyses some early works from the late 1980s using artificial neural networks for music generation and how their pioneering contributions foreshadowed current techniques. Then, we introduce some conceptual framework to analyze the various concepts and dimensions involved. Various examples of recent systems are introduced and analyzed to illustrate the variety of concerns and of techniques.

* Open preliminary version of an article invited and under evaluation for a special issue on Arts in a Neural networks journal 

  Access Paper or Ask Questions

Learning Mixed Membership Mallows Models from Pairwise Comparisons

Apr 03, 2015
Weicong Ding, Prakash Ishwar, Venkatesh Saligrama

We propose a novel parameterized family of Mixed Membership Mallows Models (M4) to account for variability in pairwise comparisons generated by a heterogeneous population of noisy and inconsistent users. M4 models individual preferences as a user-specific probabilistic mixture of shared latent Mallows components. Our key algorithmic insight for estimation is to establish a statistical connection between M4 and topic models by viewing pairwise comparisons as words, and users as documents. This key insight leads us to explore Mallows components with a separable structure and leverage recent advances in separable topic discovery. While separability appears to be overly restrictive, we nevertheless show that it is an inevitable outcome of a relatively small number of latent Mallows components in a world of large number of items. We then develop an algorithm based on robust extreme-point identification of convex polygons to learn the reference rankings, and is provably consistent with polynomial sample complexity guarantees. We demonstrate that our new model is empirically competitive with the current state-of-the-art approaches in predicting real-world preferences.


  Access Paper or Ask Questions

Threats to Federated Learning: A Survey

Mar 04, 2020
Lingjuan Lyu, Han Yu, Qiang Yang

With the emergence of data silos and popular privacy awareness, the traditional centralized approach of training artificial intelligence (AI) models is facing strong challenges. Federated learning (FL) has recently emerged as a promising solution under this new reality. Existing FL protocol design has been shown to exhibit vulnerabilities which can be exploited by adversaries both within and without the system to compromise data privacy. It is thus of paramount importance to make FL system designers to be aware of the implications of future FL algorithm design on privacy-preservation. Currently, there is no survey on this topic. In this paper, we bridge this important gap in FL literature. By providing a concise introduction to the concept of FL, and a unique taxonomy covering threat models and two major attacks on FL: 1) poisoning attacks and 2) inference attacks, this paper provides an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks, and discuss promising future research directions towards more robust privacy preservation in FL.

* 7 pages, 4 figures, 2 tables 

  Access Paper or Ask Questions

A Heterogeneous Graphical Model to Understand User-Level Sentiments in Social Media

Dec 17, 2019
Rahul Radhakrishnan Iyer, Jing Chen, Haonan Sun, Keyang Xu

Social Media has seen a tremendous growth in the last decade and is continuing to grow at a rapid pace. With such adoption, it is increasingly becoming a rich source of data for opinion mining and sentiment analysis. The detection and analysis of sentiment in social media is thus a valuable topic and attracts a lot of research efforts. Most of the earlier efforts focus on supervised learning approaches to solve this problem, which require expensive human annotations and therefore limits their practical use. In our work, we propose a semi-supervised approach to predict user-level sentiments for specific topics. We define and utilize a heterogeneous graph built from the social networks of the users with the knowledge that connected users in social networks typically share similar sentiments. Compared with the previous works, we have several novelties: (1) we incorporate the influences/authoritativeness of the users into the model, 2) we include comment-based and like-based user-user links to the graph, 3) we superimpose multiple heterogeneous graphs into one thereby allowing multiple types of links to exist between two users.

* 6 pages, 1 figure 

  Access Paper or Ask Questions

Open Source MagicData-RAMC: A Rich Annotated Mandarin Conversational(RAMC) Speech Dataset

Mar 31, 2022
Zehui Yang, Yifan Chen, Lei Luo, Runyan Yang, Lingxuan Ye, Gaofeng Cheng, Ji Xu, Yaohui Jin, Qingqing Zhang, Pengyuan Zhang, Lei Xie, Yonghong Yan

This paper introduces a high-quality rich annotated Mandarin conversational (RAMC) speech dataset called MagicData-RAMC. The MagicData-RAMC corpus contains 180 hours of conversational speech data recorded from native speakers of Mandarin Chinese over mobile phones with a sampling rate of 16 kHz. The dialogs in MagicData-RAMC are classified into 15 diversified domains and tagged with topic labels, ranging from science and technology to ordinary life. Accurate transcription and precise speaker voice activity timestamps are manually labeled for each sample. Speakers' detailed information is also provided. As a Mandarin speech dataset designed for dialog scenarios with high quality and rich annotations, MagicData-RAMC enriches the data diversity in the Mandarin speech community and allows extensive research on a series of speech-related tasks, including automatic speech recognition, speaker diarization, topic detection, keyword search, text-to-speech, etc. We also conduct several relevant tasks and provide experimental results to help evaluate the dataset.

* Paper on submission to Interspeech2022 

  Access Paper or Ask Questions

<<
127
128
129
130
131
132
133
134
135
136
137
138
139
>>