Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Topic": models, code, and papers

Conversation Generation with Concept Flow

Nov 07, 2019
Houyu Zhang, Zhenghao Liu, Chenyan Xiong, Zhiyuan Liu

Human conversations naturally evolve around related entities and connected concepts, while may also shift from topic to topic. This paper presents ConceptFlow, which leverages commonsense knowledge graphs to explicitly model such conversation flows for better conversation response generation. ConceptFlow grounds the conversation inputs to the latent concept space and represents the potential conversation flow as a concept flow along the commonsense relations. The concept is guided by a graph attention mechanism that models the possibility of the conversation evolving towards different concepts. The conversation response is then decoded using the encodings of both utterance texts and concept flows, integrating the learned conversation structure in the concept space. Our experiments on Reddit conversations demonstrate the advantage of ConceptFlow over previous commonsense aware dialog models and fine-tuned GPT-2 models, while using much fewer parameters but with explicit modeling of conversation structures.


  Access Paper or Ask Questions

Remote sensing image regression for heterogeneous change detection

Jul 31, 2018
Luigi T. Luppino, Filippo M. Bianchi, Gabriele Moser, Stian N. Anfinsen

Change detection in heterogeneous multitemporal satellite images is an emerging topic in remote sensing. In this paper we propose a framework, based on image regression, to perform change detection in heterogeneous multitemporal satellite images, which has become a main topic in remote sensing. Our method learns a transformation to map the first image to the domain of the other image, and vice versa. Four regression methods are selected to carry out the transformation: Gaussian processes, support vector machines, random forests, and a recently proposed kernel regression method called homogeneous pixel transformation. To evaluate not only potentials and limitations of our framework, but also the pros and cons of each regression method, we perform experiments on two data sets. The results indicates that random forests achieve good performance, are fast and robust to hyperparameters, whereas the homogeneous pixel transformation method can achieve better accuracy at the cost of a higher complexity.

* Accepted to Machine Learning for Signal Processing 2018 

  Access Paper or Ask Questions

Deep Learning for Detecting Cyberbullying Across Multiple Social Media Platforms

Jan 19, 2018
Sweta Agrawal, Amit Awekar

Harassment by cyberbullies is a significant phenomenon on the social media. Existing works for cyberbullying detection have at least one of the following three bottlenecks. First, they target only one particular social media platform (SMP). Second, they address just one topic of cyberbullying. Third, they rely on carefully handcrafted features of the data. We show that deep learning based models can overcome all three bottlenecks. Knowledge learned by these models on one dataset can be transferred to other datasets. We performed extensive experiments using three real-world datasets: Formspring (12k posts), Twitter (16k posts), and Wikipedia(100k posts). Our experiments provide several useful insights about cyberbullying detection. To the best of our knowledge, this is the first work that systematically analyzes cyberbullying detection on various topics across multiple SMPs using deep learning based models and transfer learning.

* Accepted for ECIR 2018 

  Access Paper or Ask Questions

Dyadformer: A Multi-modal Transformer for Long-Range Modeling of Dyadic Interactions

Sep 20, 2021
David Curto, Albert Clapés, Javier Selva, Sorina Smeureanu, Julio C. S. Jacques Junior, David Gallardo-Pujol, Georgina Guilera, David Leiva, Thomas B. Moeslund, Sergio Escalera, Cristina Palmero

Personality computing has become an emerging topic in computer vision, due to the wide range of applications it can be used for. However, most works on the topic have focused on analyzing the individual, even when applied to interaction scenarios, and for short periods of time. To address these limitations, we present the Dyadformer, a novel multi-modal multi-subject Transformer architecture to model individual and interpersonal features in dyadic interactions using variable time windows, thus allowing the capture of long-term interdependencies. Our proposed cross-subject layer allows the network to explicitly model interactions among subjects through attentional operations. This proof-of-concept approach shows how multi-modality and joint modeling of both interactants for longer periods of time helps to predict individual attributes. With Dyadformer, we improve state-of-the-art self-reported personality inference results on individual subjects on the UDIVA v0.5 dataset.

* Accepted to the 2021 ICCV Workshop on Understanding Social Behavior in Dyadic and Small Group Interactions 

  Access Paper or Ask Questions

Inferring the Reader: Guiding Automated Story Generation with Commonsense Reasoning

May 04, 2021
Xiangyu Peng, Siyan Li, Sarah Wiegreffe, Mark Riedl

Transformer-based language model approaches to automated story generation currently provide state-of-the-art results. However, they still suffer from plot incoherence when generating narratives over time, and critically lack basic commonsense reasoning. Furthermore, existing methods generally focus only on single-character stories, or fail to track characters at all. To improve the coherence of generated narratives and to expand the scope of character-centric narrative generation, we introduce Commonsense-inference Augmented neural StoryTelling (CAST), a framework for introducing commonsense reasoning into the generation process while modeling the interaction between multiple characters. We find that our CAST method produces significantly more coherent and on-topic two-character stories, outperforming baselines in dimensions including plot plausibility and staying on topic. We also show how the CAST method can be used to further train language models that generate more coherent stories and reduce computation cost.


  Access Paper or Ask Questions

Knowledge Triggering, Extraction and Storage via Human-Robot Verbal Interaction

Apr 22, 2021
Lucrezia Grassi, Carmine Tommaso Recchiuto, Antonio Sgorbissa

This article describes a novel approach to expand in run-time the knowledge base of an Artificial Conversational Agent. A technique for automatic knowledge extraction from the user's sentence and four methods to insert the new acquired concepts in the knowledge base have been developed and integrated into a system that has already been tested for knowledge-based conversation between a social humanoid robot and residents of care homes. The run-time addition of new knowledge allows overcoming some limitations that affect most robots and chatbots: the incapability of engaging the user for a long time due to the restricted number of conversation topics. The insertion in the knowledge base of new concepts recognized in the user's sentence is expected to result in a wider range of topics that can be covered during an interaction, making the conversation less repetitive. Two experiments are presented to assess the performance of the knowledge extraction technique, and the efficiency of the developed insertion methods when adding several concepts in the Ontology.

* 19 pages, 7 figures, submitted to Robotics and Autonomous Systems 

  Access Paper or Ask Questions

Improve Document Embedding for Text Categorization Through Deep Siamese Neural Network

May 31, 2020
Erfaneh Gharavi, Hadi Veisi

Due to the increasing amount of data on the internet, finding a highly-informative, low-dimensional representation for text is one of the main challenges for efficient natural language processing tasks including text classification. This representation should capture the semantic information of the text while retaining their relevance level for document classification. This approach maps the documents with similar topics to a similar space in vector space representation. To obtain representation for large text, we propose the utilization of deep Siamese neural networks. To embed document relevance in topics in the distributed representation, we use a Siamese neural network to jointly learn document representations. Our Siamese network consists of two sub-network of multi-layer perceptron. We examine our representation for the text categorization task on BBC news dataset. The results show that the proposed representations outperform the conventional and state-of-the-art representations in the text classification task on this dataset.


  Access Paper or Ask Questions

Characterizing the public perception of WhatsApp through the lens of media

Aug 17, 2018
Josemar Alves Caetano, Gabriel Magno, Evandro Cunha, Wagner Meira Jr., Humberto T. Marques-Neto, Virgilio Almeida

WhatsApp is, as of 2018, a significant component of the global information and communication infrastructure, especially in developing countries. However, probably due to its strong end-to-end encryption, WhatsApp became an attractive place for the dissemination of misinformation, extremism and other forms of undesirable behavior. In this paper, we investigate the public perception of WhatsApp through the lens of media. We analyze two large datasets of news and show the kind of content that is being associated with WhatsApp in different regions of the world and over time. Our analyses include the examination of named entities, general vocabulary, and topics addressed in news articles that mention WhatsApp, as well as the polarity of these texts. Among other results, we demonstrate that the vocabulary and topics around the term "whatsapp" in the media have been changing over the years and in 2018 concentrate on matters related to misinformation, politics and criminal scams. More generally, our findings are useful to understand the impact that tools like WhatsApp play in the contemporary society and how they are seen by the communities themselves.

* Accepted as a full paper at the 2nd International Workshop on Rumours and Deception in Social Media (RDSM 2018), co-located with CIKM 2018 in Turin. Please cite the RDSM version 

  Access Paper or Ask Questions

Diagnostic Prediction Using Discomfort Drawings

Dec 05, 2016
Cheng Zhang, Hedvig Kjellstrom, Bo C. Bertilson

In this paper, we explore the possibility to apply machine learning to make diagnostic predictions using discomfort drawings. A discomfort drawing is an intuitive way for patients to express discomfort and pain related symptoms. These drawings have proven to be an effective method to collect patient data and make diagnostic decisions in real-life practice. A dataset from real-world patient cases is collected for which medical experts provide diagnostic labels. Next, we extend a factorized multimodal topic model, Inter-Battery Topic Model (IBTM), to train a system that can make diagnostic predictions given an unseen discomfort drawing. Experimental results show reasonable predictions of diagnostic labels given an unseen discomfort drawing. The positive result indicates a significant potential of machine learning to be used for parts of the pain diagnostic process and to be a decision support system for physicians and other health care personnel.

* NIPS 2016 Workshop on Machine Learning for Health 

  Access Paper or Ask Questions

Hierarchical Dirichlet Scaling Process

Feb 11, 2015
Dongwoo Kim, Alice Oh

We present the \textit{hierarchical Dirichlet scaling process} (HDSP), a Bayesian nonparametric mixed membership model. The HDSP generalizes the hierarchical Dirichlet process (HDP) to model the correlation structure between metadata in the corpus and mixture components. We construct the HDSP based on the normalized gamma representation of the Dirichlet process, and this construction allows incorporating a scaling function that controls the membership probabilities of the mixture components. We develop two scaling methods to demonstrate that different modeling assumptions can be expressed in the HDSP. We also derive the corresponding approximate posterior inference algorithms using variational Bayes. Through experiments on datasets of newswire, medical journal articles, conference proceedings, and product reviews, we show that the HDSP results in a better predictive performance than labeled LDA, partially labeled LDA, and author topic model and a better negative review classification performance than the supervised topic model and SVM.


  Access Paper or Ask Questions

<<
118
119
120
121
122
123
124
125
126
127
128
129
130
>>