Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Topic": models, code, and papers

BEyond observation: an approach for ObjectNav

Jun 21, 2021
Daniel V. Ruiz, Eduardo Todt

With the rise of automation, unmanned vehicles became a hot topic both as commercial products and as a scientific research topic. It composes a multi-disciplinary field of robotics that encompasses embedded systems, control theory, path planning, Simultaneous Localization and Mapping (SLAM), scene reconstruction, and pattern recognition. In this work, we present our exploratory research of how sensor data fusion and state-of-the-art machine learning algorithms can perform the Embodied Artificial Intelligence (E-AI) task called Visual Semantic Navigation. This task, a.k.a Object-Goal Navigation (ObjectNav) consists of autonomous navigation using egocentric visual observations to reach an object belonging to the target semantic class without prior knowledge of the environment. Our method reached fourth place on the Habitat Challenge 2021 ObjectNav on the Minival phase and the Test-Standard Phase.

* Presented at the 2th Embodied AI Workshop at CVPR 2021 

  Access Paper or Ask Questions

Prediction, Selection, and Generation: Exploration of Knowledge-Driven Conversation System

May 05, 2021
Cheng Luo, Dayiheng Liu, Chanjuan Li, Li Lu, Jiancheng Lv

In open-domain conversational systems, it is important but challenging to leverage background knowledge. We can use the incorporation of knowledge to make the generation of dialogue controllable, and can generate more diverse sentences that contain real knowledge. In this paper, we combine the knowledge bases and pre-training model to propose a knowledge-driven conversation system. The system includes modules such as dialogue topic prediction, knowledge matching and dialogue generation. Based on this system, we study the performance factors that maybe affect the generation of knowledge-driven dialogue: topic coarse recall algorithm, number of knowledge choices, generation model choices, etc., and finally made the system reach state-of-the-art. These experimental results will provide some guiding significance for the future research of this task. As far as we know, this is the first work to study and analyze the effects of the related factors.


  Access Paper or Ask Questions

Determining Relative Argument Specificity and Stance for Complex Argumentative Structures

Jun 26, 2019
Esin Durmus, Faisal Ladhak, Claire Cardie

Systems for automatic argument generation and debate require the ability to (1) determine the stance of any claims employed in the argument and (2) assess the specificity of each claim relative to the argument context. Existing work on understanding claim specificity and stance, however, has been limited to the study of argumentative structures that are relatively shallow, most often consisting of a single claim that directly supports or opposes the argument thesis. In this paper, we tackle these tasks in the context of complex arguments on a diverse set of topics. In particular, our dataset consists of manually curated argument trees for 741 controversial topics covering 95,312 unique claims; lines of argument are generally of depth 2 to 6. We find that as the distance between a pair of claims increases along the argument path, determining the relative specificity of a pair of claims becomes easier and determining their relative stance becomes harder.


  Access Paper or Ask Questions

Constructing a Hierarchical User Interest Structure based on User Profiles

Sep 20, 2017
Chao Zhao, Min Zhao, Yi Guan

The interests of individual internet users fall into a hierarchical structure which is useful in regards to building personalized searches and recommendations. Most studies on this subject construct the interest hierarchy of a single person from the document perspective. In this study, we constructed the user interest hierarchy via user profiles. We organized 433,397 user interests, referred to here as "attentions", into a user attention network (UAN) from 200 million user profiles; we then applied the Louvain algorithm to detect hierarchical clusters in these attentions. Finally, a 26-level hierarchy with 34,676 clusters was obtained. We found that these attention clusters were aggregated according to certain topics as opposed to the hyponymy-relation based conceptual ontologies. The topics can be entities or concepts, and the relations were not restrained by hyponymy. The concept relativity encapsulated in the user's interest can be captured by labeling the attention clusters with corresponding concepts.


  Access Paper or Ask Questions

Automatic Summarization of Online Debates

Aug 15, 2017
Nattapong Sanchan, Ahmet Aker, Kalina Bontcheva

Debate summarization is one of the novel and challenging research areas in automatic text summarization which has been largely unexplored. In this paper, we develop a debate summarization pipeline to summarize key topics which are discussed or argued in the two opposing sides of online debates. We view that the generation of debate summaries can be achieved by clustering, cluster labeling, and visualization. In our work, we investigate two different clustering approaches for the generation of the summaries. In the first approach, we generate the summaries by applying purely term-based clustering and cluster labeling. The second approach makes use of X-means for clustering and Mutual Information for labeling the clusters. Both approaches are driven by ontologies. We visualize the results using bar charts. We think that our results are a smooth entry for users aiming to receive the first impression about what is discussed within a debate topic containing waste number of argumentations.

* Accepted and to be published in Natural Language Processing and Information Retrieval workshop, Recent Advances in Natural Language Processing 2017 (RANLP 2017) 

  Access Paper or Ask Questions

Influential Node Detection in Implicit Social Networks using Multi-task Gaussian Copula Models

Nov 30, 2016
Qunwei Li, Bhavya Kailkhura, Jayaraman J. Thiagarajan, Zhenliang Zhang, Pramod K. Varshney

Influential node detection is a central research topic in social network analysis. Many existing methods rely on the assumption that the network structure is completely known \textit{a priori}. However, in many applications, network structure is unavailable to explain the underlying information diffusion phenomenon. To address the challenge of information diffusion analysis with incomplete knowledge of network structure, we develop a multi-task low rank linear influence model. By exploiting the relationships between contagions, our approach can simultaneously predict the volume (i.e. time series prediction) for each contagion (or topic) and automatically identify the most influential nodes for each contagion. The proposed model is validated using synthetic data and an ISIS twitter dataset. In addition to improving the volume prediction performance significantly, we show that the proposed approach can reliably infer the most influential users for specific contagions.

* NIPS 2016 Workshop, JMLR: Workshop and Conference Proceedings 

  Access Paper or Ask Questions

Multi-Modal Bayesian Embeddings for Learning Social Knowledge Graphs

Apr 20, 2016
Zhilin Yang, Jie Tang, William Cohen

We study the extent to which online social networks can be connected to open knowledge bases. The problem is referred to as learning social knowledge graphs. We propose a multi-modal Bayesian embedding model, GenVector, to learn latent topics that generate word and network embeddings. GenVector leverages large-scale unlabeled data with embeddings and represents data of two modalities---i.e., social network users and knowledge concepts---in a shared latent topic space. Experiments on three datasets show that the proposed method clearly outperforms state-of-the-art methods. We then deploy the method on AMiner, a large-scale online academic search system with a network of 38,049,189 researchers with a knowledge base with 35,415,011 concepts. Our method significantly decreases the error rate in an online A/B test with live users.


  Access Paper or Ask Questions

Beyond Pixels: A Comprehensive Survey from Bottom-up to Semantic Image Segmentation and Cosegmentation

Feb 03, 2015
Hongyuan Zhu, Fanman Meng, Jianfei Cai, Shijian Lu

Image segmentation refers to the process to divide an image into nonoverlapping meaningful regions according to human perception, which has become a classic topic since the early ages of computer vision. A lot of research has been conducted and has resulted in many applications. However, while many segmentation algorithms exist, yet there are only a few sparse and outdated summarizations available, an overview of the recent achievements and issues is lacking. We aim to provide a comprehensive review of the recent progress in this field. Covering 180 publications, we give an overview of broad areas of segmentation topics including not only the classic bottom-up approaches, but also the recent development in superpixel, interactive methods, object proposals, semantic image parsing and image cosegmentation. In addition, we also review the existing influential datasets and evaluation metrics. Finally, we suggest some design flavors and research directions for future research in image segmentation.

* submitted to Elsevier Journal of Visual Communications and Image Representation 

  Access Paper or Ask Questions

Learning Reputation in an Authorship Network

Nov 25, 2013
Charanpal Dhanjal, Stéphan Clémençon

The problem of searching for experts in a given academic field is hugely important in both industry and academia. We study exactly this issue with respect to a database of authors and their publications. The idea is to use Latent Semantic Indexing (LSI) and Latent Dirichlet Allocation (LDA) to perform topic modelling in order to find authors who have worked in a query field. We then construct a coauthorship graph and motivate the use of influence maximisation and a variety of graph centrality measures to obtain a ranked list of experts. The ranked lists are further improved using a Markov Chain-based rank aggregation approach. The complete method is readily scalable to large datasets. To demonstrate the efficacy of the approach we report on an extensive set of computational simulations using the Arnetminer dataset. An improvement in mean average precision is demonstrated over the baseline case of simply using the order of authors found by the topic models.


  Access Paper or Ask Questions

<<
115
116
117
118
119
120
121
122
123
124
125
126
127
>>