Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Topic": models, code, and papers

Personalizing Image Search Results on Flickr

Apr 12, 2007
Kristina Lerman, Anon Plangprasopchok, Chio Wong

The social media site Flickr allows users to upload their photos, annotate them with tags, submit them to groups, and also to form social networks by adding other users as contacts. Flickr offers multiple ways of browsing or searching it. One option is tag search, which returns all images tagged with a specific keyword. If the keyword is ambiguous, e.g., ``beetle'' could mean an insect or a car, tag search results will include many images that are not relevant to the sense the user had in mind when executing the query. We claim that users express their photography interests through the metadata they add in the form of contacts and image annotations. We show how to exploit this metadata to personalize search results for the user, thereby improving search performance. First, we show that we can significantly improve search precision by filtering tag search results by user's contacts or a larger social network that includes those contact's contacts. Secondly, we describe a probabilistic model that takes advantage of tag information to discover latent topics contained in the search results. The users' interests can similarly be described by the tags they used for annotating their images. The latent topics found by the model are then used to personalize search results by finding images on topics that are of interest to the user.

* 12 pages, submitted to AAAI07 workshop on Intelligent Information Personalization 

  Access Paper or Ask Questions

Towards A Sentiment Analyzer for Low-Resource Languages

Nov 12, 2020
Dian Indriani, Arbi Haza Nasution, Winda Monika, Salhazan Nasution

Twitter is one of the top influenced social media which has a million number of active users. It is commonly used for microblogging that allows users to share messages, ideas, thoughts and many more. Thus, millions interaction such as short messages or tweets are flowing around among the twitter users discussing various topics that has been happening world-wide. This research aims to analyse a sentiment of the users towards a particular trending topic that has been actively and massively discussed at that time. We chose a hashtag \textit{\#kpujangancurang} that was the trending topic during the Indonesia presidential election in 2019. We use the hashtag to obtain a set of data from Twitter to analyse and investigate further the positive or the negative sentiment of the users from their tweets. This research utilizes rapid miner tool to generate the twitter data and comparing Naive Bayes, K-Nearest Neighbor, Decision Tree, and Multi-Layer Perceptron classification methods to classify the sentiment of the twitter data. There are overall 200 labeled data in this experiment. Overall, Naive Bayes and Multi-Layer Perceptron classification outperformed the other two methods on 11 experiments with different size of training-testing data split. The two classifiers are potential to be used in creating sentiment analyzer for low-resource languages with small corpus.

* Accepted to be published in Proceedings of International Conference on Smart Computing and Cyber Security (SMARTCYBER 2020) 

  Access Paper or Ask Questions

Deep Conversational Recommender in Travel

Jun 25, 2019
Lizi Liao, Ryuichi Takanobu, Yunshan Ma, Xun Yang, Minlie Huang, Tat-Seng Chua

When traveling to a foreign country, we are often in dire need of an intelligent conversational agent to provide instant and informative responses to our various queries. However, to build such a travel agent is non-trivial. First of all, travel naturally involves several sub-tasks such as hotel reservation, restaurant recommendation and taxi booking etc, which invokes the need for global topic control. Secondly, the agent should consider various constraints like price or distance given by the user to recommend an appropriate venue. In this paper, we present a Deep Conversational Recommender (DCR) and apply to travel. It augments the sequence-to-sequence (seq2seq) models with a neural latent topic component to better guide response generation and make the training easier. To consider the various constraints for venue recommendation, we leverage a graph convolutional network (GCN) based approach to capture the relationships between different venues and the match between venue and dialog context. For response generation, we combine the topic-based component with the idea of pointer networks, which allows us to effectively incorporate recommendation results. We perform extensive evaluation on a multi-turn task-oriented dialog dataset in travel domain and the results show that our method achieves superior performance as compared to a wide range of baselines.

* 12 pages, 7 figures, submitted to TKDE. arXiv admin note: text overlap with arXiv:1809.07070 by other authors 

  Access Paper or Ask Questions

User-level Weibo Recommendation incorporating Social Influence based on Semi-Supervised Algorithm

Oct 26, 2012
Daifeng Li, Zhipeng Luo, Golden Guo-zheng Sun, Jie Tang, Jingwei Zhang

Tencent Weibo, as one of the most popular micro-blogging services in China, has attracted millions of users, producing 30-60 millions of weibo (similar as tweet in Twitter) daily. With the overload problem of user generate content, Tencent users find it is more and more hard to browse and find valuable information at the first time. In this paper, we propose a Factor Graph based weibo recommendation algorithm TSI-WR (Topic-Level Social Influence based Weibo Recommendation), which could help Tencent users to find most suitable information. The main innovation is that we consider both direct and indirect social influence from topic level based on social balance theory. The main advantages of adopting this strategy are that it could first build a more accurate description of latent relationship between two users with weak connections, which could help to solve the data sparsity problem; second provide a more accurate recommendation for a certain user from a wider range. Other meaningful contextual information is also combined into our model, which include: Users profile, Users influence, Content of weibos, Topic information of weibos and etc. We also design a semi-supervised algorithm to further reduce the influence of data sparisty. The experiments show that all the selected variables are important and the proposed model outperforms several baseline methods.

* to be sumitted in JASIST 

  Access Paper or Ask Questions

What makes us curious? analysis of a corpus of open-domain questions

Oct 28, 2021
Zhaozhen Xu, Amelia Howarth, Nicole Briggs, Nello Cristianini

Every day people ask short questions through smart devices or online forums to seek answers to all kinds of queries. With the increasing number of questions collected it becomes difficult to provide answers to each of them, which is one of the reasons behind the growing interest in automated question answering. Some questions are similar to existing ones that have already been answered, while others could be answered by an external knowledge source such as Wikipedia. An important question is what can be revealed by analysing a large set of questions. In 2017, "We the Curious" science centre in Bristol started a project to capture the curiosity of Bristolians: the project collected more than 10,000 questions on various topics. As no rules were given during collection, the questions are truly open-domain, and ranged across a variety of topics. One important aim for the science centre was to understand what concerns its visitors had beyond science, particularly on societal and cultural issues. We addressed this question by developing an Artificial Intelligence tool that can be used to perform various processing tasks: detection of equivalence between questions; detection of topic and type; and answering of the question. As we focused on the creation of a "generalist" tool, we trained it with labelled data from different datasets. We called the resulting model QBERT. This paper describes what information we extracted from the automated analysis of the WTC corpus of open-domain questions.


  Access Paper or Ask Questions

Automated Text Summarization Base on Lexicales Chain and graph Using of WordNet and Wikipedia Knowledge Base

Mar 15, 2012
Mohsen Pourvali, Mohammad Saniee Abadeh

The technology of automatic document summarization is maturing and may provide a solution to the information overload problem. Nowadays, document summarization plays an important role in information retrieval. With a large volume of documents, presenting the user with a summary of each document greatly facilitates the task of finding the desired documents. Document summarization is a process of automatically creating a compressed version of a given document that provides useful information to users, and multi-document summarization is to produce a summary delivering the majority of information content from a set of documents about an explicit or implicit main topic. The lexical cohesion structure of the text can be exploited to determine the importance of a sentence/phrase. Lexical chains are useful tools to analyze the lexical cohesion structure in a text .In this paper we consider the effect of the use of lexical cohesion features in Summarization, And presenting a algorithm base on the knowledge base. Ours algorithm at first find the correct sense of any word, Then constructs the lexical chains, remove Lexical chains that less score than other, detects topics roughly from lexical chains, segments the text with respect to the topics and selects the most important sentences. The experimental results on an open benchmark datasets from DUC01 and DUC02 show that our proposed approach can improve the performance compared to sate-of-the-art summarization approaches.

* IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012 

  Access Paper or Ask Questions

Machine Reading Comprehension: The Role of Contextualized Language Models and Beyond

May 13, 2020
Zhuosheng Zhang, Hai Zhao, Rui Wang

Machine reading comprehension (MRC) aims to teach machines to read and comprehend human languages, which is a long-standing goal of natural language processing (NLP). With the burst of deep neural networks and the evolution of contextualized language models (CLMs), the research of MRC has experienced two significant breakthroughs. MRC and CLM, as a phenomenon, have a great impact on the NLP community. In this survey, we provide a comprehensive and comparative review on MRC covering overall research topics about 1) the origin and development of MRC and CLM, with a particular focus on the role of CLMs; 2) the impact of MRC and CLM to the NLP community; 3) the definition, datasets, and evaluation of MRC; 4) general MRC architecture and technical methods in the view of two-stage Encoder-Decoder solving architecture from the insights of the cognitive process of humans; 5) previous highlights, emerging topics, and our empirical analysis, among which we especially focus on what works in different periods of MRC researches. We propose a full-view categorization and new taxonomies on these topics. The primary views we have arrived at are that 1) MRC boosts the progress from language processing to understanding; 2) the rapid improvement of MRC systems greatly benefits from the development of CLMs; 3) the theme of MRC is gradually moving from shallow text matching to cognitive reasoning.

* 51 pages 

  Access Paper or Ask Questions

LitMC-BERT: transformer-based multi-label classification of biomedical literature with an application on COVID-19 literature curation

Apr 19, 2022
Qingyu Chen, Jingcheng Du, Alexis Allot, Zhiyong Lu

The rapid growth of biomedical literature poses a significant challenge for curation and interpretation. This has become more evident during the COVID-19 pandemic. LitCovid, a literature database of COVID-19 related papers in PubMed, has accumulated over 180,000 articles with millions of accesses. Approximately 10,000 new articles are added to LitCovid every month. A main curation task in LitCovid is topic annotation where an article is assigned with up to eight topics, e.g., Treatment and Diagnosis. The annotated topics have been widely used both in LitCovid (e.g., accounting for ~18% of total uses) and downstream studies such as network generation. However, it has been a primary curation bottleneck due to the nature of the task and the rapid literature growth. This study proposes LITMC-BERT, a transformer-based multi-label classification method in biomedical literature. It uses a shared transformer backbone for all the labels while also captures label-specific features and the correlations between label pairs. We compare LITMC-BERT with three baseline models on two datasets. Its micro-F1 and instance-based F1 are 5% and 4% higher than the current best results, respectively, and only requires ~18% of the inference time than the Binary BERT baseline. The related datasets and models are available via https://github.com/ncbi/ml-transformer.


  Access Paper or Ask Questions

Using Search Queries to Understand Health Information Needs in Africa

Jun 14, 2018
Rediet Abebe, Shawndra Hill, Jennifer Wortman Vaughan, Peter M. Small, H. Andrew Schwartz

The lack of comprehensive, high-quality health data in developing nations creates a roadblock for combating the impacts of disease. One key challenge is understanding the health information needs of people in these nations. Without understanding people's everyday needs, concerns, and misconceptions, health organizations and policymakers lack the ability to effectively target education and programming efforts. In this paper, we propose a bottom-up approach that uses search data from individuals to uncover and gain insight into health information needs in Africa. We analyze Bing searches related to HIV/AIDS, malaria, and tuberculosis from all 54 African nations. For each disease, we automatically derive a set of common search themes or topics, revealing a wide-spread interest in various types of information, including disease symptoms, drugs, concerns about breastfeeding, as well as stigma, beliefs in natural cures, and other topics that may be hard to uncover through traditional surveys. We expose the different patterns that emerge in health information needs by demographic groups (age and sex) and country. We also uncover discrepancies in the quality of content returned by search engines to users by topic. Combined, our results suggest that search data can help illuminate health information needs in Africa and inform discussions on health policy and targeted education efforts both on- and offline.


  Access Paper or Ask Questions

Neural Contrastive Clustering: Fully Unsupervised Bias Reduction for Sentiment Classification

Apr 22, 2022
Jared Mowery

Background: Neural networks produce biased classification results due to correlation bias (they learn correlations between their inputs and outputs to classify samples, even when those correlations do not represent cause-and-effect relationships). Objective: This study introduces a fully unsupervised method of mitigating correlation bias, demonstrated with sentiment classification on COVID-19 social media data. Methods: Correlation bias in sentiment classification often arises in conversations about controversial topics. Therefore, this study uses adversarial learning to contrast clusters based on sentiment classification labels, with clusters produced by unsupervised topic modeling. This discourages the neural network from learning topic-related features that produce biased classification results. Results: Compared to a baseline classifier, neural contrastive clustering approximately doubles accuracy on bias-prone sentences for human-labeled COVID-19 social media data, without adversely affecting the classifier's overall F1 score. Despite being a fully unsupervised approach, neural contrastive clustering achieves a larger improvement in accuracy on bias-prone sentences than a supervised masking approach. Conclusions: Neural contrastive clustering reduces correlation bias in sentiment text classification. Further research is needed to explore generalizing this technique to other neural network architectures and application domains.

* 13 pages, 1 table 

  Access Paper or Ask Questions

<<
95
96
97
98
99
100
101
102
103
104
105
106
107
>>