Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"Topic Modeling": models, code, and papers

Taste or Addiction?: Using Play Logs to Infer Song Selection Motivation

May 26, 2017
Kosetsu Tsukuda, Masataka Goto

Online music services are increasing in popularity. They enable us to analyze people's music listening behavior based on play logs. Although it is known that people listen to music based on topic (e.g., rock or jazz), we assume that when a user is addicted to an artist, s/he chooses the artist's songs regardless of topic. Based on this assumption, in this paper, we propose a probabilistic model to analyze people's music listening behavior. Our main contributions are three-fold. First, to the best of our knowledge, this is the first study modeling music listening behavior by taking into account the influence of addiction to artists. Second, by using real-world datasets of play logs, we showed the effectiveness of our proposed model. Third, we carried out qualitative experiments and showed that taking addiction into account enables us to analyze music listening behavior from a new viewpoint in terms of how people listen to music according to the time of day, how an artist's songs are listened to by people, etc. We also discuss the possibility of applying the analysis results to applications such as artist similarity computation and song recommendation.

* Accepted by The 21st Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2017) 
  

Combining Topic Modeling with Grounded Theory: Case Studies of Project Collaboration

Jun 28, 2022
Eyyub Can Odacioglu, Lihong Zhang, Richard Allmendinger

This paper proposes an Artificial Intelligence (AI) Grounded Theory for management studies. We argue that this novel and rigorous approach that embeds topic modelling will lead to the latent knowledge to be found. We illustrate this abductive method using 51 case studies of collaborative innovation published by Project Management Institute (PMI). Initial results are presented and discussed that include 40 topics, 6 categories, 4 of which are core categories, and two new theories of project collaboration.

  

Science Checker: Extractive-Boolean Question Answering For Scientific Fact Checking

Apr 29, 2022
Loïc Rakotoson, Charles Letaillieur, Sylvain Massip, Fréjus Laleye

With the explosive growth of scientific publications, making the synthesis of scientific knowledge and fact checking becomes an increasingly complex task. In this paper, we propose a multi-task approach for verifying the scientific questions based on a joint reasoning from facts and evidence in research articles. We propose an intelligent combination of (1) an automatic information summarization and (2) a Boolean Question Answering which allows to generate an answer to a scientific question from only extracts obtained after summarization. Thus on a given topic, our proposed approach conducts structured content modeling based on paper abstracts to answer a scientific question while highlighting texts from paper that discuss the topic. We based our final system on an end-to-end Extractive Question Answering (EQA) combined with a three outputs classification model to perform in-depth semantic understanding of a question to illustrate the aggregation of multiple responses. With our light and fast proposed architecture, we achieved an average error rate of 4% and a F1-score of 95.6%. Our results are supported via experiments with two QA models (BERT, RoBERTa) over 3 Million Open Access (OA) articles in the medical and health domains on Europe PMC.

* Proceedings of the 1st International Workshop on Multimedia AI against Disinformation (2022) 
* 8 pages, 4 figures 
  

Hotel Preference Rank based on Online Customer Review

Oct 10, 2021
Muhammad Apriandito Arya Saputra, Andry Alamsyah, Fajar Ibnu Fatihan

Topline hotels are now shifting into the digital way in how they understand their customers to maintain and ensuring satisfaction. Rather than the conventional way which uses written reviews or interviews, the hotel is now heavily investing in Artificial Intelligence particularly Machine Learning solutions. Analysis of online customer reviews changes the way companies make decisions in a more effective way than using conventional analysis. The purpose of this research is to measure hotel service quality. The proposed approach emphasizes service quality dimensions reviews of the top-5 luxury hotel in Indonesia that appear on the online travel site TripAdvisor based on section Best of 2018. In this research, we use a model based on a simple Bayesian classifier to classify each customer review into one of the service quality dimensions. Our model was able to separate each classification properly by accuracy, kappa, recall, precision, and F-measure measurements. To uncover latent topics in the customer's opinion we use Topic Modeling. We found that the common issue that occurs is about responsiveness as it got the lowest percentage compared to others. Our research provides a faster outlook of hotel rank based on service quality to end customers based on a summary of the previous online review.

* Test Engineering and Management, Vol. 83: March/April 2020 
* 5 pages, 6 figures, 5 tables 
  

Topic Modeling Based Multi-modal Depression Detection

Mar 28, 2018
Yuan Gong, Christian Poellabauer

Major depressive disorder is a common mental disorder that affects almost 7% of the adult U.S. population. The 2017 Audio/Visual Emotion Challenge (AVEC) asks participants to build a model to predict depression levels based on the audio, video, and text of an interview ranging between 7-33 minutes. Since averaging features over the entire interview will lose most temporal information, how to discover, capture, and preserve useful temporal details for such a long interview are significant challenges. Therefore, we propose a novel topic modeling based approach to perform context-aware analysis of the recording. Our experiments show that the proposed approach outperforms context-unaware methods and the challenge baselines for all metrics.

* Proceedings of the 7th Audio/Visual Emotion Challenge and Workshop (AVEC). (Official Depression Challenge Winner) 
  

Topic Detection and Tracking with Time-Aware Document Embeddings

Dec 12, 2021
Hang Jiang, Doug Beeferman, Weiquan Mao, Deb Roy

The time at which a message is communicated is a vital piece of metadata in many real-world natural language processing tasks such as Topic Detection and Tracking (TDT). TDT systems aim to cluster a corpus of news articles by event, and in that context, stories that describe the same event are likely to have been written at around the same time. Prior work on time modeling for TDT takes this into account, but does not well capture how time interacts with the semantic nature of the event. For example, stories about a tropical storm are likely to be written within a short time interval, while stories about a movie release may appear over weeks or months. In our work, we design a neural method that fuses temporal and textual information into a single representation of news documents for event detection. We fine-tune these time-aware document embeddings with a triplet loss architecture, integrate the model into downstream TDT systems, and evaluate the systems on two benchmark TDT data sets in English. In the retrospective setting, we apply clustering algorithms to the time-aware embeddings and show substantial improvements over baselines on the News2013 data set. In the online streaming setting, we add our document encoder to an existing state-of-the-art TDT pipeline and demonstrate that it can benefit the overall performance. We conduct ablation studies on the time representation and fusion algorithm strategies, showing that our proposed model outperforms alternative strategies. Finally, we probe the model to examine how it handles recurring events more effectively than previous TDT systems.

  

Topic Modeling the Hàn diăn Ancient Classics

Feb 02, 2017
Colin Allen, Hongliang Luo, Jaimie Murdock, Jianghuai Pu, Xiaohong Wang, Yanjie Zhai, Kun Zhao

Ancient Chinese texts present an area of enormous challenge and opportunity for humanities scholars interested in exploiting computational methods to assist in the development of new insights and interpretations of culturally significant materials. In this paper we describe a collaborative effort between Indiana University and Xi'an Jiaotong University to support exploration and interpretation of a digital corpus of over 18,000 ancient Chinese documents, which we refer to as the "Handian" ancient classics corpus (H\`an di\u{a}n g\u{u} j\'i, i.e, the "Han canon" or "Chinese classics"). It contains classics of ancient Chinese philosophy, documents of historical and biographical significance, and literary works. We begin by describing the Digital Humanities context of this joint project, and the advances in humanities computing that made this project feasible. We describe the corpus and introduce our application of probabilistic topic modeling to this corpus, with attention to the particular challenges posed by modeling ancient Chinese documents. We give a specific example of how the software we have developed can be used to aid discovery and interpretation of themes in the corpus. We outline more advanced forms of computer-aided interpretation that are also made possible by the programming interface provided by our system, and the general implications of these methods for understanding the nature of meaning in these texts.

* 24 pages; 14 pages supplemental 
  

Domain Specific Author Attribution Based on Feedforward Neural Network Language Models

Feb 24, 2016
Zhenhao Ge, Yufang Sun

Authorship attribution refers to the task of automatically determining the author based on a given sample of text. It is a problem with a long history and has a wide range of application. Building author profiles using language models is one of the most successful methods to automate this task. New language modeling methods based on neural networks alleviate the curse of dimensionality and usually outperform conventional N-gram methods. However, there have not been much research applying them to authorship attribution. In this paper, we present a novel setup of a Neural Network Language Model (NNLM) and apply it to a database of text samples from different authors. We investigate how the NNLM performs on a task with moderate author set size and relatively limited training and test data, and how the topics of the text samples affect the accuracy. NNLM achieves nearly 2.5% reduction in perplexity, a measurement of fitness of a trained language model to the test data. Given 5 random test sentences, it also increases the author classification accuracy by 3.43% on average, compared with the N-gram methods using SRILM tools. An open source implementation of our methodology is freely available at https://github.com/zge/authorship-attribution/.

* International Conference on Pattern Recognition Application and Methods (ICPRAM) 2016 
  

Facebook Ad Engagement in the Russian Active Measures Campaign of 2016

Dec 23, 2020
Mirela Silva, Luiz Giovanini, Juliana Fernandes, Daniela Oliveira, Catia S. Silva

This paper examines 3,517 Facebook ads created by Russia's Internet Research Agency (IRA) between June 2015 and August 2017 in its active measures disinformation campaign targeting the 2016 U.S. general election. We aimed to unearth the relationship between ad engagement (as measured by ad clicks) and 41 features related to ads' metadata, sociolinguistic structures, and sentiment. Our analysis was three-fold: (i) understand the relationship between engagement and features via correlation analysis; (ii) find the most relevant feature subsets to predict engagement via feature selection; and (iii) find the semantic topics that best characterize the dataset via topic modeling. We found that ad expenditure, text size, ad lifetime, and sentiment were the top features predicting users' engagement to the ads. Additionally, positive sentiment ads were more engaging than negative ads, and sociolinguistic features (e.g., use of religion-relevant words) were identified as highly important in the makeup of an engaging ad. Linear SVM and Logistic Regression classifiers achieved the highest mean F-scores (93.6% for both models), determining that the optimal feature subset contains 12 and 6 features, respectively. Finally, we corroborate the findings of related works that the IRA specifically targeted Americans on divisive ad topics (e.g., LGBT rights, African American reparations).

  
<<
39
40
41
42
43
44
45
46
47
48
49
50
>>