Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"Topic Modeling": models, code, and papers

Topic Modeling the Hàn diăn Ancient Classics

Feb 02, 2017
Colin Allen, Hongliang Luo, Jaimie Murdock, Jianghuai Pu, Xiaohong Wang, Yanjie Zhai, Kun Zhao

Ancient Chinese texts present an area of enormous challenge and opportunity for humanities scholars interested in exploiting computational methods to assist in the development of new insights and interpretations of culturally significant materials. In this paper we describe a collaborative effort between Indiana University and Xi'an Jiaotong University to support exploration and interpretation of a digital corpus of over 18,000 ancient Chinese documents, which we refer to as the "Handian" ancient classics corpus (H\`an di\u{a}n g\u{u} j\'i, i.e, the "Han canon" or "Chinese classics"). It contains classics of ancient Chinese philosophy, documents of historical and biographical significance, and literary works. We begin by describing the Digital Humanities context of this joint project, and the advances in humanities computing that made this project feasible. We describe the corpus and introduce our application of probabilistic topic modeling to this corpus, with attention to the particular challenges posed by modeling ancient Chinese documents. We give a specific example of how the software we have developed can be used to aid discovery and interpretation of themes in the corpus. We outline more advanced forms of computer-aided interpretation that are also made possible by the programming interface provided by our system, and the general implications of these methods for understanding the nature of meaning in these texts.

* 24 pages; 14 pages supplemental 
  
Access Paper or Ask Questions

Domain Specific Author Attribution Based on Feedforward Neural Network Language Models

Feb 24, 2016
Zhenhao Ge, Yufang Sun

Authorship attribution refers to the task of automatically determining the author based on a given sample of text. It is a problem with a long history and has a wide range of application. Building author profiles using language models is one of the most successful methods to automate this task. New language modeling methods based on neural networks alleviate the curse of dimensionality and usually outperform conventional N-gram methods. However, there have not been much research applying them to authorship attribution. In this paper, we present a novel setup of a Neural Network Language Model (NNLM) and apply it to a database of text samples from different authors. We investigate how the NNLM performs on a task with moderate author set size and relatively limited training and test data, and how the topics of the text samples affect the accuracy. NNLM achieves nearly 2.5% reduction in perplexity, a measurement of fitness of a trained language model to the test data. Given 5 random test sentences, it also increases the author classification accuracy by 3.43% on average, compared with the N-gram methods using SRILM tools. An open source implementation of our methodology is freely available at https://github.com/zge/authorship-attribution/.

* International Conference on Pattern Recognition Application and Methods (ICPRAM) 2016 
  
Access Paper or Ask Questions

Facebook Ad Engagement in the Russian Active Measures Campaign of 2016

Dec 23, 2020
Mirela Silva, Luiz Giovanini, Juliana Fernandes, Daniela Oliveira, Catia S. Silva

This paper examines 3,517 Facebook ads created by Russia's Internet Research Agency (IRA) between June 2015 and August 2017 in its active measures disinformation campaign targeting the 2016 U.S. general election. We aimed to unearth the relationship between ad engagement (as measured by ad clicks) and 41 features related to ads' metadata, sociolinguistic structures, and sentiment. Our analysis was three-fold: (i) understand the relationship between engagement and features via correlation analysis; (ii) find the most relevant feature subsets to predict engagement via feature selection; and (iii) find the semantic topics that best characterize the dataset via topic modeling. We found that ad expenditure, text size, ad lifetime, and sentiment were the top features predicting users' engagement to the ads. Additionally, positive sentiment ads were more engaging than negative ads, and sociolinguistic features (e.g., use of religion-relevant words) were identified as highly important in the makeup of an engaging ad. Linear SVM and Logistic Regression classifiers achieved the highest mean F-scores (93.6% for both models), determining that the optimal feature subset contains 12 and 6 features, respectively. Finally, we corroborate the findings of related works that the IRA specifically targeted Americans on divisive ad topics (e.g., LGBT rights, African American reparations).

  
Access Paper or Ask Questions

Image Super-Resolution via Sparse Bayesian Modeling of Natural Images

Sep 19, 2012
Haichao Zhang, David Wipf, Yanning Zhang

Image super-resolution (SR) is one of the long-standing and active topics in image processing community. A large body of works for image super resolution formulate the problem with Bayesian modeling techniques and then obtain its Maximum-A-Posteriori (MAP) solution, which actually boils down to a regularized regression task over separable regularization term. Although straightforward, this approach cannot exploit the full potential offered by the probabilistic modeling, as only the posterior mode is sought. Also, the separable property of the regularization term can not capture any correlations between the sparse coefficients, which sacrifices much on its modeling accuracy. We propose a Bayesian image SR algorithm via sparse modeling of natural images. The sparsity property of the latent high resolution image is exploited by introducing latent variables into the high-order Markov Random Field (MRF) which capture the content adaptive variance by pixel-wise adaptation. The high-resolution image is estimated via Empirical Bayesian estimation scheme, which is substantially faster than our previous approach based on Markov Chain Monte Carlo sampling [1]. It is shown that the actual cost function for the proposed approach actually incorporates a non-factorial regularization term over the sparse coefficients. Experimental results indicate that the proposed method can generate competitive or better results than \emph{state-of-the-art} SR algorithms.

* 8 figures, 29 pages 
  
Access Paper or Ask Questions

Comprehensive Information Integration Modeling Framework for Video Titling

Jun 24, 2020
Shengyu Zhang, Ziqi Tan, Jin Yu, Zhou Zhao, Kun Kuang, Tan Jiang, Jingren Zhou, Hongxia Yang, Fei Wu

In e-commerce, consumer-generated videos, which in general deliver consumers' individual preferences for the different aspects of certain products, are massive in volume. To recommend these videos to potential consumers more effectively, diverse and catchy video titles are critical. However, consumer-generated videos seldom accompany appropriate titles. To bridge this gap, we integrate comprehensive sources of information, including the content of consumer-generated videos, the narrative comment sentences supplied by consumers, and the product attributes, in an end-to-end modeling framework. Although automatic video titling is very useful and demanding, it is much less addressed than video captioning. The latter focuses on generating sentences that describe videos as a whole while our task requires the product-aware multi-grained video analysis. To tackle this issue, the proposed method consists of two processes, i.e., granular-level interaction modeling and abstraction-level story-line summarization. Specifically, the granular-level interaction modeling first utilizes temporal-spatial landmark cues, descriptive words, and abstractive attributes to builds three individual graphs and recognizes the intra-actions in each graph through Graph Neural Networks (GNN). Then the global-local aggregation module is proposed to model inter-actions across graphs and aggregate heterogeneous graphs into a holistic graph representation. The abstraction-level story-line summarization further considers both frame-level video features and the holistic graph to utilize the interactions between products and backgrounds, and generate the story-line topic of the video. We collect a large-scale dataset accordingly from real-world data in Taobao, a world-leading e-commerce platform, and will make the desensitized version publicly available to nourish further development of the research community...

* 11 pages, 6 figures, to appear in KDD 2020 proceedings 
  
Access Paper or Ask Questions

Multi-level computational methods for interdisciplinary research in the HathiTrust Digital Library

Jun 08, 2017
Jaimie Murdock, Colin Allen, Katy Börner, Robert Light, Simon McAlister, Andrew Ravenscroft, Robert Rose, Doori Rose, Jun Otsuka, David Bourget, John Lawrence, Chris Reed

We show how faceted search using a combination of traditional classification systems and mixed-membership topic models can go beyond keyword search to inform resource discovery, hypothesis formulation, and argument extraction for interdisciplinary research. Our test domain is the history and philosophy of scientific work on animal mind and cognition. The methods can be generalized to other research areas and ultimately support a system for semi-automatic identification of argument structures. We provide a case study for the application of the methods to the problem of identifying and extracting arguments about anthropomorphism during a critical period in the development of comparative psychology. We show how a combination of classification systems and mixed-membership models trained over large digital libraries can inform resource discovery in this domain. Through a novel approach of "drill-down" topic modeling---simultaneously reducing both the size of the corpus and the unit of analysis---we are able to reduce a large collection of fulltext volumes to a much smaller set of pages within six focal volumes containing arguments of interest to historians and philosophers of comparative psychology. The volumes identified in this way did not appear among the first ten results of the keyword search in the HathiTrust digital library and the pages bear the kind of "close reading" needed to generate original interpretations that is the heart of scholarly work in the humanities. Zooming back out, we provide a way to place the books onto a map of science originally constructed from very different data and for different purposes. The multilevel approach advances understanding of the intellectual and societal contexts in which writings are interpreted.

* revised, 29 pages, 3 figures 
  
Access Paper or Ask Questions

Exploration and Exploitation of Victorian Science in Darwin's Reading Notebooks

Feb 02, 2017
Jaimie Murdock, Colin Allen, Simon DeDeo

Search in an environment with an uncertain distribution of resources involves a trade-off between exploitation of past discoveries and further exploration. This extends to information foraging, where a knowledge-seeker shifts between reading in depth and studying new domains. To study this decision-making process, we examine the reading choices made by one of the most celebrated scientists of the modern era: Charles Darwin. From the full-text of books listed in his chronologically-organized reading journals, we generate topic models to quantify his local (text-to-text) and global (text-to-past) reading decisions using Kullback-Liebler Divergence, a cognitively-validated, information-theoretic measure of relative surprise. Rather than a pattern of surprise-minimization, corresponding to a pure exploitation strategy, Darwin's behavior shifts from early exploitation to later exploration, seeking unusually high levels of cognitive surprise relative to previous eras. These shifts, detected by an unsupervised Bayesian model, correlate with major intellectual epochs of his career as identified both by qualitative scholarship and Darwin's own self-commentary. Our methods allow us to compare his consumption of texts with their publication order. We find Darwin's consumption more exploratory than the culture's production, suggesting that underneath gradual societal changes are the explorations of individual synthesis and discovery. Our quantitative methods advance the study of cognitive search through a framework for testing interactions between individual and collective behavior and between short- and long-term consumption choices. This novel application of topic modeling to characterize individual reading complements widespread studies of collective scientific behavior.

* Cognition 159 (2017) 117-126 
* Cognition pre-print, published February 2017; 22 pages, plus 17 pages supporting information, 7 pages references 
  
Access Paper or Ask Questions

Large Scale Analysis of Open MOOC Reviews to Support Learners' Course Selection

Jan 11, 2022
Manuel J. Gomez, Mario Calderón, Victor Sánchez, Félix J. García Clemente, José A. Ruipérez-Valiente

The recent pandemic has changed the way we see education. It is not surprising that children and college students are not the only ones using online education. Millions of adults have signed up for online classes and courses during last years, and MOOC providers, such as Coursera or edX, are reporting millions of new users signing up in their platforms. However, students do face some challenges when choosing courses. Though online review systems are standard among many verticals, no standardized or fully decentralized review systems exist in the MOOC ecosystem. In this vein, we believe that there is an opportunity to leverage available open MOOC reviews in order to build simpler and more transparent reviewing systems, allowing users to really identify the best courses out there. Specifically, in our research we analyze 2.4 million reviews (which is the largest MOOC reviews dataset used until now) from five different platforms in order to determine the following: (1) if the numeric ratings provide discriminant information to learners, (2) if NLP-driven sentiment analysis on textual reviews could provide valuable information to learners, (3) if we can leverage NLP-driven topic finding techniques to infer themes that could be important for learners, and (4) if we can use these models to effectively characterize MOOCs based on the open reviews. Results show that numeric ratings are clearly biased (63\% of them are 5-star ratings), and the topic modeling reveals some interesting topics related with course advertisements, the real applicability, or the difficulty of the different courses. We expect our study to shed some light on the area and promote a more transparent approach in online education reviews, which are becoming more and more popular as we enter the post-pandemic era.

* 36 pages, 8 figures 
  
Access Paper or Ask Questions

Modeling Engagement Dynamics of Online Discussions using Relativistic Gravitational Theory

Aug 10, 2019
Subhabrata Dutta, Dipankar Das, Tanmoy Chakraborty

Online discussions are valuable resources to study user behaviour on a diverse set of topics. Unlike previous studies which model a discussion in a static manner, in the present study, we model it as a time-varying process and solve two inter-related problems -- predict which user groups will get engaged with an ongoing discussion, and forecast the growth rate of a discussion in terms of the number of comments. We propose RGNet (Relativistic Gravitational Nerwork), a novel algorithm that uses Einstein Field Equations of gravity to model online discussions as `cloud of dust' hovering over a user spacetime manifold, attracting users of different groups at different rates over time. We also propose GUVec, a global user embedding method for an online discussion, which is used by RGNet to predict temporal user engagement. RGNet leverages different textual and network-based features to learn the dust distribution for discussions. We employ four baselines -- first two using LSTM architecture, third one using Newtonian model of gravity, and fourth one using a logistic regression adopted from a previous work on engagement prediction. Experiments on Reddit dataset show that RGNet achieves 0.72 Micro F1 score and 6.01% average error for temporal engagement prediction of user groups and growth rate forecasting, respectively, outperforming all the baselines significantly. We further employ RGNet to predict non-temporal engagement -- whether users will comment to a given post or not. RGNet achieves 0.62 AUC for this task, outperforming existing baseline by 8.77% AUC.

  
Access Paper or Ask Questions
<<
39
40
41
42
43
44
45
46
47
48
49
50
>>