Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"Topic Modeling": models, code, and papers

Conic Scan-and-Cover algorithms for nonparametric topic modeling

Oct 09, 2017
Mikhail Yurochkin, Aritra Guha, XuanLong Nguyen

We propose new algorithms for topic modeling when the number of topics is unknown. Our approach relies on an analysis of the concentration of mass and angular geometry of the topic simplex, a convex polytope constructed by taking the convex hull of vertices representing the latent topics. Our algorithms are shown in practice to have accuracy comparable to a Gibbs sampler in terms of topic estimation, which requires the number of topics be given. Moreover, they are one of the fastest among several state of the art parametric techniques. Statistical consistency of our estimator is established under some conditions.

  
Access Paper or Ask Questions

Learning Topics using Semantic Locality

Apr 11, 2018
Ziyi Zhao, Krittaphat Pugdeethosapol, Sheng Lin, Zhe Li, Caiwen Ding, Yanzhi Wang, Qinru Qiu

The topic modeling discovers the latent topic probability of the given text documents. To generate the more meaningful topic that better represents the given document, we proposed a new feature extraction technique which can be used in the data preprocessing stage. The method consists of three steps. First, it generates the word/word-pair from every single document. Second, it applies a two-way TF-IDF algorithm to word/word-pair for semantic filtering. Third, it uses the K-means algorithm to merge the word pairs that have the similar semantic meaning. Experiments are carried out on the Open Movie Database (OMDb), Reuters Dataset and 20NewsGroup Dataset. The mean Average Precision score is used as the evaluation metric. Comparing our results with other state-of-the-art topic models, such as Latent Dirichlet allocation and traditional Restricted Boltzmann Machines. Our proposed data preprocessing can improve the generated topic accuracy by up to 12.99\%.

* International Conference of Pattern Recognition (ICPR) in 2018 
  
Access Paper or Ask Questions

TwiInsight: Discovering Topics and Sentiments from Social Media Datasets

May 23, 2017
Zhengkui Wang, Guangdong Bai, Soumyadeb Chowdhury, Quanqing Xu, Zhi Lin Seow

Social media platforms contain a great wealth of information which provides opportunities for us to explore hidden patterns or unknown correlations, and understand people's satisfaction with what they are discussing. As one showcase, in this paper, we present a system, TwiInsight which explores the insight of Twitter data. Different from other Twitter analysis systems, TwiInsight automatically extracts the popular topics under different categories (e.g., healthcare, food, technology, sports and transport) discussed in Twitter via topic modeling and also identifies the correlated topics across different categories. Additionally, it also discovers the people's opinions on the tweets and topics via the sentiment analysis. The system also employs an intuitive and informative visualization to show the uncovered insight. Furthermore, we also develop and compare six most popular algorithms - three for sentiment analysis and three for topic modeling.

  
Access Paper or Ask Questions

Mixture of Virtual-Kernel Experts for Multi-Objective User Profile Modeling

Jun 04, 2021
Zhenhui Xu, Meng Zhao, Liqun Liu, Xiaopeng Zhang, Bifeng Zhang

In many industrial applications like online advertising and recommendation systems, diverse and accurate user profiles can greatly help improve personalization. For building user profiles, deep learning is widely used to mine expressive tags to describe users' preferences from their historical actions. For example, tags mined from users' click-action history can represent the categories of ads that users are interested in, and they are likely to continue being clicked in the future. Traditional solutions usually introduce multiple independent Two-Tower models to mine tags from different actions, e.g., click, conversion. However, the models cannot learn complementarily and support effective training for data-sparse actions. Besides, limited by the lack of information fusion between the two towers, the model learning is insufficient to represent users' preferences on various topics well. This paper introduces a novel multi-task model called Mixture of Virtual-Kernel Experts (MVKE) to learn multiple topic-related user preferences based on different actions unitedly. In MVKE, we propose a concept of Virtual-Kernel Expert, which focuses on modeling one particular facet of the user's preference, and all of them learn coordinately. Besides, the gate-based structure used in MVKE builds an information fusion bridge between two towers, improving the model's capability much and maintaining high efficiency. We apply the model in Tencent Advertising System, where both online and offline evaluations show that our method has a significant improvement compared with the existing ones and brings about an obvious lift to actual advertising revenue.

* 10 pages, under review 
  
Access Paper or Ask Questions

Multidimensional counting grids: Inferring word order from disordered bags of words

Feb 14, 2012
Nebojsa Jojic, Alessandro Perina

Models of bags of words typically assume topic mixing so that the words in a single bag come from a limited number of topics. We show here that many sets of bag of words exhibit a very different pattern of variation than the patterns that are efficiently captured by topic mixing. In many cases, from one bag of words to the next, the words disappear and new ones appear as if the theme slowly and smoothly shifted across documents (providing that the documents are somehow ordered). Examples of latent structure that describe such ordering are easily imagined. For example, the advancement of the date of the news stories is reflected in a smooth change over the theme of the day as certain evolving news stories fall out of favor and new events create new stories. Overlaps among the stories of consecutive days can be modeled by using windows over linearly arranged tight distributions over words. We show here that such strategy can be extended to multiple dimensions and cases where the ordering of data is not readily obvious. We demonstrate that this way of modeling covariation in word occurrences outperforms standard topic models in classification and prediction tasks in applications in biology, text modeling and computer vision.

  
Access Paper or Ask Questions

Prosody-Based Automatic Segmentation of Speech into Sentences and Topics

Jun 27, 2000
E. Shriberg, A. Stolcke, D. Hakkani-Tur, G. Tur

A crucial step in processing speech audio data for information extraction, topic detection, or browsing/playback is to segment the input into sentence and topic units. Speech segmentation is challenging, since the cues typically present for segmenting text (headers, paragraphs, punctuation) are absent in spoken language. We investigate the use of prosody (information gleaned from the timing and melody of speech) for these tasks. Using decision tree and hidden Markov modeling techniques, we combine prosodic cues with word-based approaches, and evaluate performance on two speech corpora, Broadcast News and Switchboard. Results show that the prosodic model alone performs on par with, or better than, word-based statistical language models -- for both true and automatically recognized words in news speech. The prosodic model achieves comparable performance with significantly less training data, and requires no hand-labeling of prosodic events. Across tasks and corpora, we obtain a significant improvement over word-only models using a probabilistic combination of prosodic and lexical information. Inspection reveals that the prosodic models capture language-independent boundary indicators described in the literature. Finally, cue usage is task and corpus dependent. For example, pause and pitch features are highly informative for segmenting news speech, whereas pause, duration and word-based cues dominate for natural conversation.

* Speech Communication 32(1-2), 127-154, September 2000 
* 30 pages, 9 figures. To appear in Speech Communication 32(1-2), Special Issue on Accessing Information in Spoken Audio, September 2000 
  
Access Paper or Ask Questions

Viewpoint and Topic Modeling of Current Events

Aug 14, 2016
Kerry Zhang, Jussi Karlgren, Cheng Zhang, Jens Lagergren

There are multiple sides to every story, and while statistical topic models have been highly successful at topically summarizing the stories in corpora of text documents, they do not explicitly address the issue of learning the different sides, the viewpoints, expressed in the documents. In this paper, we show how these viewpoints can be learned completely unsupervised and represented in a human interpretable form. We use a novel approach of applying CorrLDA2 for this purpose, which learns topic-viewpoint relations that can be used to form groups of topics, where each group represents a viewpoint. A corpus of documents about the Israeli-Palestinian conflict is then used to demonstrate how a Palestinian and an Israeli viewpoint can be learned. By leveraging the magnitudes and signs of the feature weights of a linear SVM, we introduce a principled method to evaluate associations between topics and viewpoints. With this, we demonstrate, both quantitatively and qualitatively, that the learned topic groups are contextually coherent, and form consistently correct topic-viewpoint associations.

* 16 pages, 4 figures, 4 tables 
  
Access Paper or Ask Questions

Scalable Modeling of Conversational-role based Self-presentation Characteristics in Large Online Forums

Dec 10, 2015
Abhimanu Kumar, Shriphani Palakodety, Chong Wang, Carolyn P. Rose, Eric P. Xing, Miaomiao Wen

Online discussion forums are complex webs of overlapping subcommunities (macrolevel structure, across threads) in which users enact different roles depending on which subcommunity they are participating in within a particular time point (microlevel structure, within threads). This sub-network structure is implicit in massive collections of threads. To uncover this structure, we develop a scalable algorithm based on stochastic variational inference and leverage topic models (LDA) along with mixed membership stochastic block (MMSB) models. We evaluate our model on three large-scale datasets, Cancer-ThreadStarter (22K users and 14.4K threads), Cancer-NameMention(15.1K users and 12.4K threads) and StackOverFlow (1.19 million users and 4.55 million threads). Qualitatively, we demonstrate that our model can provide useful explanations of microlevel and macrolevel user presentation characteristics in different communities using the topics discovered from posts. Quantitatively, we show that our model does better than MMSB and LDA in predicting user reply structure within threads. In addition, we demonstrate via synthetic data experiments that the proposed active sub-network discovery model is stable and recovers the original parameters of the experimental setup with high probability.

  
Access Paper or Ask Questions

Catching the Drift: Probabilistic Content Models, with Applications to Generation and Summarization

May 12, 2004
Regina Barzilay, Lillian Lee

We consider the problem of modeling the content structure of texts within a specific domain, in terms of the topics the texts address and the order in which these topics appear. We first present an effective knowledge-lean method for learning content models from un-annotated documents, utilizing a novel adaptation of algorithms for Hidden Markov Models. We then apply our method to two complementary tasks: information ordering and extractive summarization. Our experiments show that incorporating content models in these applications yields substantial improvement over previously-proposed methods.

* HLT-NAACL 2004: Proceedings of the Main Conference, pp. 113--120 
* Best paper award 
  
Access Paper or Ask Questions

Graph-based Trajectory Visualization for Text Mining of COVID-19 Biomedical Literature

Jun 07, 2021
Yeseul Jeon, Dongjun Chung, Jina Park, Ick Hoon Jin

Since the emergence of the worldwide pandemic of COVID-19, relevant research has been published at a dazzling pace, which makes it hard to follow the research in this area without dedicated efforts. It is practically impossible to implement this task manually due to the high volume of the relevant literature. Text mining has been considered to be a powerful approach to address this challenge, especially the topic modeling, a well-known unsupervised method that aims to reveal latent topics from the literature. However, in spite of its potential utility, the results generated from this approach are often investigated manually. Hence, its application to the COVID-19 literature is not straightforward and expert knowledge is needed to make meaningful interpretations. In order to address these challenges, we propose a novel analytical framework for effective visualization and mining of topic modeling results. Here we assumed that topics constituting a paper can be positioned on an interaction map, which belongs to a high-dimensional Euclidean space. Based on this assumption, after summarizing topics with their topic-word distributions using the biterm topic model, we mapped these latent topics on networks to visualize relationships among the topics. Moreover, in the proposed approach, the change of relationships among topics can be traced using a trajectory plot generated with different levels of word richness. These results together provide a deeply mined and intuitive representation of relationships among topics related to a specific research area. The application of this proposed framework to the PubMed literature shows that our approach facilitates understanding of the topics constituting the COVID-19 knowledge.

  
Access Paper or Ask Questions
<<
22
23
24
25
26
27
28
29
30
31
32
33
34
>>