Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"Time Series Analysis": models, code, and papers

An Empirical Evaluation of Time-Series Feature Sets

Oct 21, 2021
Trent Henderson, Ben D. Fulcher

Solving time-series problems with features has been rising in popularity due to the availability of software for feature extraction. Feature-based time-series analysis can now be performed using many different feature sets, including hctsa (7730 features: Matlab), feasts (42 features: R), tsfeatures (63 features: R), Kats (40 features: Python), tsfresh (up to 1558 features: Python), TSFEL (390 features: Python), and the C-coded catch22 (22 features: Matlab, R, Python, and Julia). There is substantial overlap in the types of methods included in these sets (e.g., properties of the autocorrelation function and Fourier power spectrum), but they are yet to be systematically compared. Here we compare these seven sets on computational speed, assess the redundancy of features contained in each, and evaluate the overlap and redundancy between them. We take an empirical approach to feature similarity based on outputs across a diverse set of real-world and simulated time series. We find that feature sets vary across three orders of magnitude in their computation time per feature on a laptop for a 1000-sample series, from the fastest sets catch22 and TSFEL (~0.1ms per feature) to tsfeatures (~3s per feature). Using PCA to evaluate feature redundancy within each set, we find the highest within-set redundancy for TSFEL and tsfresh. For example, in TSFEL, 90% of the variance across 390 features can be captured with just four PCs. Finally, we introduce a metric for quantifying overlap between pairs of feature sets, which indicates substantial overlap. We found that the largest feature set, hctsa, is the most comprehensive, and that tsfresh is the most distinctive, due to its incorporation of many low-level Fourier coefficients. Our results provide empirical understanding of the differences between existing feature sets, information that can be used to better tailor feature sets to their applications.

* Submitted to and accepted for publication in SFE-TSDM Workshop at 21st IEEE International Conference on Data Mining (IEEE ICDM 2021) 
  

Neural Ordinary Differential Equation Model for Evolutionary Subspace Clustering and Its Applications

Jul 22, 2021
Mingyuan Bai, S. T. Boris Choy, Junping Zhang, Junbin Gao

The neural ordinary differential equation (neural ODE) model has attracted increasing attention in time series analysis for its capability to process irregular time steps, i.e., data are not observed over equally-spaced time intervals. In multi-dimensional time series analysis, a task is to conduct evolutionary subspace clustering, aiming at clustering temporal data according to their evolving low-dimensional subspace structures. Many existing methods can only process time series with regular time steps while time series are unevenly sampled in many situations such as missing data. In this paper, we propose a neural ODE model for evolutionary subspace clustering to overcome this limitation and a new objective function with subspace self-expressiveness constraint is introduced. We demonstrate that this method can not only interpolate data at any time step for the evolutionary subspace clustering task, but also achieve higher accuracy than other state-of-the-art evolutionary subspace clustering methods. Both synthetic and real-world data are used to illustrate the efficacy of our proposed method.

  

Residual Networks as Flows of Velocity Fields for Diffeomorphic Time Series Alignment

Jun 22, 2021
Hao Huang, Boulbaba Ben Amor, Xichan Lin, Fan Zhu, Yi Fang

Non-linear (large) time warping is a challenging source of nuisance in time-series analysis. In this paper, we propose a novel diffeomorphic temporal transformer network for both pairwise and joint time-series alignment. Our ResNet-TW (Deep Residual Network for Time Warping) tackles the alignment problem by compositing a flow of incremental diffeomorphic mappings. Governed by the flow equation, our Residual Network (ResNet) builds smooth, fluid and regular flows of velocity fields and consequently generates smooth and invertible transformations (i.e. diffeomorphic warping functions). Inspired by the elegant Large Deformation Diffeomorphic Metric Mapping (LDDMM) framework, the final transformation is built by the flow of time-dependent vector fields which are none other than the building blocks of our Residual Network. The latter is naturally viewed as an Eulerian discretization schema of the flow equation (an ODE). Once trained, our ResNet-TW aligns unseen data by a single inexpensive forward pass. As we show in experiments on both univariate (84 datasets from UCR archive) and multivariate time-series (MSR Action-3D, Florence-3D and MSR Daily Activity), ResNet-TW achieves competitive performance in joint alignment and classification.

* 19 pages 
  

CDSA: Cross-Dimensional Self-Attention for Multivariate, Geo-tagged Time Series Imputation

May 23, 2019
Jiawei Ma, Zheng Shou, Alireza Zareian, Hassan Mansour, Anthony Vetro, Shih-Fu Chang

Many real-world applications involve multivariate, geo-tagged time series data: at each location, multiple sensors record corresponding measurements. For example, air quality monitoring system records PM2.5, CO, etc. The resulting time-series data often has missing values due to device outages or communication errors. In order to impute the missing values, state-of-the-art methods are built on Recurrent Neural Networks (RNN), which process each time stamp sequentially, prohibiting the direct modeling of the relationship between distant time stamps. Recently, the self-attention mechanism has been proposed for sequence modeling tasks such as machine translation, significantly outperforming RNN because the relationship between each two time stamps can be modeled explicitly. In this paper, we are the first to adapt the self-attention mechanism for multivariate, geo-tagged time series data. In order to jointly capture the self-attention across multiple dimensions, including time, location and the sensor measurements, while maintain low computational complexity, we propose a novel approach called Cross-Dimensional Self-Attention (CDSA) to process each dimension sequentially, yet in an order-independent manner. Our extensive experiments on four real-world datasets, including three standard benchmarks and our newly collected NYC-traffic dataset, demonstrate that our approach outperforms the state-of-the-art imputation and forecasting methods. A detailed systematic analysis confirms the effectiveness of our design choices.

  

Causal Patterns: Extraction of multiple causal relationships by Mixture of Probabilistic Partial Canonical Correlation Analysis

Dec 12, 2017
Hiroki Mori, Keisuke Kawano, Hiroki Yokoyama

In this paper, we propose a mixture of probabilistic partial canonical correlation analysis (MPPCCA) that extracts the Causal Patterns from two multivariate time series. Causal patterns refer to the signal patterns within interactions of two elements having multiple types of mutually causal relationships, rather than a mixture of simultaneous correlations or the absence of presence of a causal relationship between the elements. In multivariate statistics, partial canonical correlation analysis (PCCA) evaluates the correlation between two multivariates after subtracting the effect of the third multivariate. PCCA can calculate the Granger Causal- ity Index (which tests whether a time-series can be predicted from an- other time-series), but is not applicable to data containing multiple partial canonical correlations. After introducing the MPPCCA, we propose an expectation-maxmization (EM) algorithm that estimates the parameters and latent variables of the MPPCCA. The MPPCCA is expected to ex- tract multiple partial canonical correlations from data series without any supervised signals to split the data as clusters. The method was then eval- uated in synthetic data experiments. In the synthetic dataset, our method estimated the multiple partial canonical correlations more accurately than the existing method. To determine the types of patterns detectable by the method, experiments were also conducted on real datasets. The method estimated the communication patterns In motion-capture data. The MP- PCCA is applicable to various type of signals such as brain signals, human communication and nonlinear complex multibody systems.

* Proceedings of the 4th IEEE International Conference on Data Science and Advanced Analytics, pp.744-754, 2017 
* DSAA2017 - The 4th IEEE International Conference on Data Science and Advanced Analytics 
  

Nyström Regularization for Time Series Forecasting

Nov 13, 2021
Zirui Sun, Mingwei Dai, Yao Wang, Shao-Bo Lin

This paper focuses on learning rate analysis of Nystr\"{o}m regularization with sequential sub-sampling for $\tau$-mixing time series. Using a recently developed Banach-valued Bernstein inequality for $\tau$-mixing sequences and an integral operator approach based on second-order decomposition, we succeed in deriving almost optimal learning rates of Nystr\"{o}m regularization with sequential sub-sampling for $\tau$-mixing time series. A series of numerical experiments are carried out to verify our theoretical results, showing the excellent learning performance of Nystr\"{o}m regularization with sequential sub-sampling in learning massive time series data. All these results extend the applicable range of Nystr\"{o}m regularization from i.i.d. samples to non-i.i.d. sequences.

* 35 pages 
  

Variational approach for learning Markov processes from time series data

Dec 11, 2017
Hao Wu, Frank Noé

Inference, prediction and control of complex dynamical systems from time series is important in many areas, including financial markets, power grid management, climate and weather modeling, or molecular dynamics. The analysis of such highly nonlinear dynamical systems is facilitated by the fact that we can often find a (generally nonlinear) transformation of the system coordinates to features in which the dynamics can be excellently approximated by a linear Markovian model. Moreover, the large number of system variables often change collectively on large time- and length-scales, facilitating a low-dimensional analysis in feature space. In this paper, we introduce a variational approach for Markov processes (VAMP) that allows us to find optimal feature mappings and optimal Markovian models of the dynamics from given time series data. The key insight is that the best linear model can be obtained from the top singular components of the Koopman operator. This leads to the definition of a family of score functions called VAMP-r which can be calculated from data, and can be employed to optimize a Markovian model. In addition, based on the relationship between the variational scores and approximation errors of Koopman operators, we propose a new VAMP-E score, which can be applied to cross-validation for hyper-parameter optimization and model selection in VAMP. VAMP is valid for both reversible and nonreversible processes and for stationary and non-stationary processes or realizations.

  

Sensor selection on graphs via data-driven node sub-sampling in network time series

Apr 24, 2020
Yiye Jiang, Jérémie Bigot, Sofian Maabout

This paper is concerned by the problem of selecting an optimal sampling set of sensors over a network of time series for the purpose of signal recovery at non-observed sensors with a minimal reconstruction error. The problem is motivated by applications where time-dependent graph signals are collected over redundant networks. In this setting, one may wish to only use a subset of sensors to predict data streams over the whole collection of nodes in the underlying graph. A typical application is the possibility to reduce the power consumption in a network of sensors that may have limited battery supplies. We propose and compare various data-driven strategies to turn off a fixed number of sensors or equivalently to select a sampling set of nodes. We also relate our approach to the existing literature on sensor selection from multivariate data with a (possibly) underlying graph structure. Our methodology combines tools from multivariate time series analysis, graph signal processing, statistical learning in high-dimension and deep learning. To illustrate the performances of our approach, we report numerical experiments on the analysis of real data from bike sharing networks in different cities.

  

Deeptime: a Python library for machine learning dynamical models from time series data

Oct 28, 2021
Moritz Hoffmann, Martin Scherer, Tim Hempel, Andreas Mardt, Brian de Silva, Brooke E. Husic, Stefan Klus, Hao Wu, Nathan Kutz, Steven L. Brunton, Frank Noé

Generation and analysis of time-series data is relevant to many quantitative fields ranging from economics to fluid mechanics. In the physical sciences, structures such as metastable and coherent sets, slow relaxation processes, collective variables dominant transition pathways or manifolds and channels of probability flow can be of great importance for understanding and characterizing the kinetic, thermodynamic and mechanistic properties of the system. Deeptime is a general purpose Python library offering various tools to estimate dynamical models based on time-series data including conventional linear learning methods, such as Markov state models (MSMs), Hidden Markov Models and Koopman models, as well as kernel and deep learning approaches such as VAMPnets and deep MSMs. The library is largely compatible with scikit-learn, having a range of Estimator classes for these different models, but in contrast to scikit-learn also provides deep Model classes, e.g. in the case of an MSM, which provide a multitude of analysis methods to compute interesting thermodynamic, kinetic and dynamical quantities, such as free energies, relaxation times and transition paths. The library is designed for ease of use but also easily maintainable and extensible code. In this paper we introduce the main features and structure of the deeptime software.

  

A study of the Multicriteria decision analysis based on the time-series features and a TOPSIS method proposal for a tensorial approach

Oct 21, 2020
Betania S. C. Campello, Leonardo T. Duarte, João M. T. Romano

A number of Multiple Criteria Decision Analysis (MCDA) methods have been developed to rank alternatives based on several decision criteria. Usually, MCDA methods deal with the criteria value at the time the decision is made without considering their evolution over time. However, it may be relevant to consider the criteria' time series since providing essential information for decision-making (e.g., an improvement of the criteria). To deal with this issue, we propose a new approach to rank the alternatives based on the criteria time-series features (tendency, variance, etc.). In this novel approach, the data is structured in three dimensions, which require a more complex data structure, as the \textit{tensors}, instead of the classical matrix representation used in MCDA. Consequently, we propose an extension for the TOPSIS method to handle a tensor rather than a matrix. Computational results reveal that it is possible to rank the alternatives from a new perspective by considering meaningful decision-making information.

  
<<
15
16
17
18
19
20
21
22
23
24
25
26
27
>>