We present our preliminary work to determine if patient's vocal acoustic, linguistic, and facial patterns could predict clinical ratings of depression severity, namely Patient Health Questionnaire depression scale (PHQ-8). We proposed a multi modal fusion model that combines three different modalities: audio, video , and text features. By training over AVEC 2017 data set, our proposed model outperforms each single modality prediction model, and surpasses the data set baseline with ice margin.
We propose a method for embedding two-dimensional locations in a continuous vector space using a neural network-based model incorporating mixtures of Gaussian distributions, presenting two model variants for text-based geolocation and lexical dialectology. Evaluated over Twitter data, the proposed model outperforms conventional regression-based geolocation and provides a better estimate of uncertainty. We also show the effectiveness of the representation for predicting words from location in lexical dialectology, and evaluate it using the DARE dataset.
Parallel corpora have driven great progress in the field of Text Simplification. However, most sentence alignment algorithms either offer a limited range of alignment types supported, or simply ignore valuable clues present in comparable documents. We address this problem by introducing a new set of flexible vicinity-driven paragraph and sentence alignment algorithms that 1-N, N-1, N-N and long distance null alignments without the need for hard-to-replicate supervised models.
We propose the split-diffuse (SD) algorithm that takes the output of an existing dimension reduction algorithm, and distributes the data points uniformly across the visualization space. The result, called the topic grids, is a set of grids on various topics which are generated from the free-form text content of any domain of interest. The topic grids efficiently utilizes the visualization space to provide visual summaries for massive data. Topical analysis, comparison and interaction can be performed on the topic grids in a more perceivable way.
A visual type theory is a cognitive tool that has much in common with language, and may be regarded as an exceptional form of spatial text adjunct. A mathematical visual type theory, called NPM, has been under development that can be viewed as an early-stage project in mathematical knowledge management and mathematical user interface development. We discuss in greater detail the notion of a visual type theory, report on progress towards a usable mathematical visual type theory, and discuss the outlook for future work on this project.
Nonnegative Matrix Factorization(NMF) is a common used technique in machine learning to extract features out of data such as text documents and images thanks to its natural clustering properties. In particular, it is popular in image processing since it can decompose several pictures and recognize common parts if they're located in the same position over the photos. This paper's aim is to present a way to add the translation invariance to the classical NMF, that is, the algorithms presented are able to detect common features, even when they're shifted, in different original images.
We propose a general model explanation system (MES) for "explaining" the output of black box classifiers. This paper describes extensions to Turner (2015), which is referred to frequently in the text. We use the motivating example of a classifier trained to detect fraud in a credit card transaction history. The key aspect is that we provide explanations applicable to a single prediction, rather than provide an interpretable set of parameters. We focus on explaining positive predictions (alerts). However, the presented methodology is symmetrically applicable to negative predictions.
We propose an interactive multimodal framework for language learning. Instead of being passively exposed to large amounts of natural text, our learners (implemented as feed-forward neural networks) engage in cooperative referential games starting from a tabula rasa setup, and thus develop their own language from the need to communicate in order to succeed at the game. Preliminary experiments provide promising results, but also suggest that it is important to ensure that agents trained in this way do not develop an adhoc communication code only effective for the game they are playing
We introduce new methods for estimating and evaluating embeddings of words in more than fifty languages in a single shared embedding space. Our estimation methods, multiCluster and multiCCA, use dictionaries and monolingual data; they do not require parallel data. Our new evaluation method, multiQVEC-CCA, is shown to correlate better than previous ones with two downstream tasks (text categorization and parsing). We also describe a web portal for evaluation that will facilitate further research in this area, along with open-source releases of all our methods.
This paper proposes a deep denoising auto-encoder technique to extract better acoustic features for speech synthesis. The technique allows us to automatically extract low-dimensional features from high dimensional spectral features in a non-linear, data-driven, unsupervised way. We compared the new stochastic feature extractor with conventional mel-cepstral analysis in analysis-by-synthesis and text-to-speech experiments. Our results confirm that the proposed method increases the quality of synthetic speech in both experiments.