Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Text": models, code, and papers

Exemplar Auditing for Multi-Label Biomedical Text Classification

Apr 07, 2020
Allen Schmaltz, Andrew Beam

Many practical applications of AI in medicine consist of semi-supervised discovery: The investigator aims to identify features of interest at a resolution more fine-grained than that of the available human labels. This is often the scenario faced in healthcare applications as coarse, high-level labels (e.g., billing codes) are often the only sources that are readily available. These challenges are compounded for modalities such as text, where the feature space is very high-dimensional, and often contains considerable amounts of noise. In this work, we generalize a recently proposed zero-shot sequence labeling method, "binary labeling via a convolutional decomposition", to the case where the available document-level human labels are themselves relatively high-dimensional. The approach yields classification with "introspection", relating the fine-grained features of an inference-time prediction to their nearest neighbors from the training set, under the model. The approach is effective, yet parsimonious, as demonstrated on a well-studied MIMIC-III multi-label classification task of electronic health record data, and is useful as a tool for organizing the analysis of neural model predictions and high-dimensional datasets. Our proposed approach yields both a competitively effective classification model and an interrogation mechanism to aid healthcare workers in understanding the salient features that drive the model's predictions.

* 22 pages, 8 tables 

  Access Paper or Ask Questions

Uncertainty-aware Self-training for Text Classification with Few Labels

Jun 27, 2020
Subhabrata Mukherjee, Ahmed Hassan Awadallah

Recent success of large-scale pre-trained language models crucially hinge on fine-tuning them on large amounts of labeled data for the downstream task, that are typically expensive to acquire. In this work, we study self-training as one of the earliest semi-supervised learning approaches to reduce the annotation bottleneck by making use of large-scale unlabeled data for the target task. Standard self-training mechanism randomly samples instances from the unlabeled pool to pseudo-label and augment labeled data. In this work, we propose an approach to improve self-training by incorporating uncertainty estimates of the underlying neural network leveraging recent advances in Bayesian deep learning. Specifically, we propose (i) acquisition functions to select instances from the unlabeled pool leveraging Monte Carlo (MC) Dropout, and (ii) learning mechanism leveraging model confidence for self-training. As an application, we focus on text classification on five benchmark datasets. We show our methods leveraging only 20-30 labeled samples per class for each task for training and for validation can perform within 3% of fully supervised pre-trained language models fine-tuned on thousands of labeled instances with an aggregate accuracy of 91% and improving by upto 12% over baselines.

  Access Paper or Ask Questions

Semantic Object Accuracy for Generative Text-to-Image Synthesis

Oct 29, 2019
Tobias Hinz, Stefan Heinrich, Stefan Wermter

Generative adversarial networks conditioned on simple textual image descriptions are capable of generating realistic-looking images. However, current methods still struggle to generate images based on complex image captions from a heterogeneous domain. Furthermore, quantitatively evaluating these text-to-image synthesis models is still challenging, as most evaluation metrics only judge image quality but not the conformity between the image and its caption. To address the aforementioned challenges we introduce both a new model that explicitly models individual objects within an image and a new evaluation metric called Semantic Object Accuracy (SOA) that specifically evaluates images given an image caption. Our model adds an object pathway to both the generator and the discriminator to explicitly learn features of individual objects. The SOA uses a pre-trained object detector to evaluate if a generated image contains objects that are specifically mentioned in the image caption, e.g. whether an image generated from "a car driving down the street" contains a car. Our evaluation shows that models which explicitly model individual objects outperform models which only model global image characteristics. However, the SOA also shows that despite this increased performance current models still struggle to generate images that contain realistic objects of multiple different domains.

* Under review. Code available here: 

  Access Paper or Ask Questions

AdaSpeech 2: Adaptive Text to Speech with Untranscribed Data

Apr 20, 2021
Yuzi Yan, Xu Tan, Bohan Li, Tao Qin, Sheng Zhao, Yuan Shen, Tie-Yan Liu

Text to speech (TTS) is widely used to synthesize personal voice for a target speaker, where a well-trained source TTS model is fine-tuned with few paired adaptation data (speech and its transcripts) on this target speaker. However, in many scenarios, only untranscribed speech data is available for adaptation, which brings challenges to the previous TTS adaptation pipelines (e.g., AdaSpeech). In this paper, we develop AdaSpeech 2, an adaptive TTS system that only leverages untranscribed speech data for adaptation. Specifically, we introduce a mel-spectrogram encoder to a well-trained TTS model to conduct speech reconstruction, and at the same time constrain the output sequence of the mel-spectrogram encoder to be close to that of the original phoneme encoder. In adaptation, we use untranscribed speech data for speech reconstruction and only fine-tune the TTS decoder. AdaSpeech 2 has two advantages: 1) Pluggable: our system can be easily applied to existing trained TTS models without re-training. 2) Effective: our system achieves on-par voice quality with the transcribed TTS adaptation (e.g., AdaSpeech) with the same amount of untranscribed data, and achieves better voice quality than previous untranscribed adaptation methods. Synthesized speech samples can be found at

* Accepted by ICASSP 2021 

  Access Paper or Ask Questions

Language Detection Engine for Multilingual Texting on Mobile Devices

Jan 07, 2021
Sourabh Vasant Gothe, Sourav Ghosh, Sharmila Mani, Guggilla Bhanodai, Ankur Agarwal, Chandramouli Sanchi

More than 2 billion mobile users worldwide type in multiple languages in the soft keyboard. On a monolingual keyboard, 38% of falsely auto-corrected words are valid in another language. This can be easily avoided by detecting the language of typed words and then validating it in its respective language. Language detection is a well-known problem in natural language processing. In this paper, we present a fast, light-weight and accurate Language Detection Engine (LDE) for multilingual typing that dynamically adapts to user intended language in real-time. We propose a novel approach where the fusion of character N-gram model and logistic regression based selector model is used to identify the language. Additionally, we present a unique method of reducing the inference time significantly by parameter reduction technique. We also discuss various optimizations fabricated across LDE to resolve ambiguity in input text among the languages with the same character pattern. Our method demonstrates an average accuracy of 94.5% for Indian languages in Latin script and that of 98% for European languages on the code-switched data. This model outperforms fastText by 60.39% and ML-Kit by 23.67% in F1 score for European languages. LDE is faster on mobile device with an average inference time of 25.91 microseconds.

* 2020 IEEE 14th International Conference on Semantic Computing (ICSC), San Diego, CA, USA, 2020, pp. 279-286 
* 2020 IEEE 14th International Conference on Semantic Computing (ICSC). Accessible at 

  Access Paper or Ask Questions

Building an Ellipsis-aware Chinese Dependency Treebank for Web Text

Jan 23, 2018
Xuancheng Ren, Xu Sun, Ji Wen, Bingzhen Wei, Weidong Zhan, Zhiyuan Zhang

Web 2.0 has brought with it numerous user-produced data revealing one's thoughts, experiences, and knowledge, which are a great source for many tasks, such as information extraction, and knowledge base construction. However, the colloquial nature of the texts poses new challenges for current natural language processing techniques, which are more adapt to the formal form of the language. Ellipsis is a common linguistic phenomenon that some words are left out as they are understood from the context, especially in oral utterance, hindering the improvement of dependency parsing, which is of great importance for tasks relied on the meaning of the sentence. In order to promote research in this area, we are releasing a Chinese dependency treebank of 319 weibos, containing 572 sentences with omissions restored and contexts reserved.

* The treebank is available at 

  Access Paper or Ask Questions

DiscoScore: Evaluating Text Generation with BERT and Discourse Coherence

Jan 28, 2022
Wei Zhao, Michael Strube, Steffen Eger

Recently, there has been a growing interest in designing text generation systems from a discourse coherence perspective, e.g., modeling the interdependence between sentences. Still, recent BERT-based evaluation metrics cannot recognize coherence and fail to punish incoherent elements in system outputs. In this work, we introduce DiscoScore, a parametrized discourse metric, which uses BERT to model discourse coherence from different perspectives, driven by Centering theory. Our experiments encompass 16 non-discourse and discourse metrics, including DiscoScore and popular coherence models, evaluated on summarization and document-level machine translation (MT). We find that (i) the majority of BERT-based metrics correlate much worse with human rated coherence than early discourse metrics, invented a decade ago; (ii) the recent state-of-the-art BARTScore is weak when operated at system level -- which is particularly problematic as systems are typically compared in this manner. DiscoScore, in contrast, achieves strong system-level correlation with human ratings, not only in coherence but also in factual consistency and other aspects, and surpasses BARTScore by over 10 correlation points on average. Further, aiming to understand DiscoScore, we provide justifications to the importance of discourse coherence for evaluation metrics, and explain the superiority of one variant over another. Our code is available at \url{}.

* v2: small fixes in the abstract 

  Access Paper or Ask Questions

More Than Words: Towards Better Quality Interpretations of Text Classifiers

Dec 23, 2021
Muhammad Bilal Zafar, Philipp Schmidt, Michele Donini, Cédric Archambeau, Felix Biessmann, Sanjiv Ranjan Das, Krishnaram Kenthapadi

The large size and complex decision mechanisms of state-of-the-art text classifiers make it difficult for humans to understand their predictions, leading to a potential lack of trust by the users. These issues have led to the adoption of methods like SHAP and Integrated Gradients to explain classification decisions by assigning importance scores to input tokens. However, prior work, using different randomization tests, has shown that interpretations generated by these methods may not be robust. For instance, models making the same predictions on the test set may still lead to different feature importance rankings. In order to address the lack of robustness of token-based interpretability, we explore explanations at higher semantic levels like sentences. We use computational metrics and human subject studies to compare the quality of sentence-based interpretations against token-based ones. Our experiments show that higher-level feature attributions offer several advantages: 1) they are more robust as measured by the randomization tests, 2) they lead to lower variability when using approximation-based methods like SHAP, and 3) they are more intelligible to humans in situations where the linguistic coherence resides at a higher granularity level. Based on these findings, we show that token-based interpretability, while being a convenient first choice given the input interfaces of the ML models, is not the most effective one in all situations.

  Access Paper or Ask Questions

Knowledge-Aware Meta-learning for Low-Resource Text Classification

Sep 10, 2021
Huaxiu Yao, Yingxin Wu, Maruan Al-Shedivat, Eric P. Xing

Meta-learning has achieved great success in leveraging the historical learned knowledge to facilitate the learning process of the new task. However, merely learning the knowledge from the historical tasks, adopted by current meta-learning algorithms, may not generalize well to testing tasks when they are not well-supported by training tasks. This paper studies a low-resource text classification problem and bridges the gap between meta-training and meta-testing tasks by leveraging the external knowledge bases. Specifically, we propose KGML to introduce additional representation for each sentence learned from the extracted sentence-specific knowledge graph. The extensive experiments on three datasets demonstrate the effectiveness of KGML under both supervised adaptation and unsupervised adaptation settings.

* Accepted by EMNLP 2021 

  Access Paper or Ask Questions