Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Text": models, code, and papers

Sexism Identification in Tweets and Gabs using Deep Neural Networks

Nov 05, 2021
Amikul Kalra, Arkaitz Zubiaga

Through anonymisation and accessibility, social media platforms have facilitated the proliferation of hate speech, prompting increased research in developing automatic methods to identify these texts. This paper explores the classification of sexism in text using a variety of deep neural network model architectures such as Long-Short-Term Memory (LSTMs) and Convolutional Neural Networks (CNNs). These networks are used in conjunction with transfer learning in the form of Bidirectional Encoder Representations from Transformers (BERT) and DistilBERT models, along with data augmentation, to perform binary and multiclass sexism classification on the dataset of tweets and gabs from the sEXism Identification in Social neTworks (EXIST) task in IberLEF 2021. The models are seen to perform comparatively to those from the competition, with the best performances seen using BERT and a multi-filter CNN model. Data augmentation further improves these results for the multi-class classification task. This paper also explores the errors made by the models and discusses the difficulty in automatically classifying sexism due to the subjectivity of the labels and the complexity of natural language used in social media.

* 8 pages 

  Access Paper or Ask Questions

CNewSum: A Large-scale Chinese News Summarization Dataset with Human-annotated Adequacy and Deducibility Level

Oct 21, 2021
Danqing Wang, Jiaze Chen, Xianze Wu, Hao Zhou, Lei Li

Automatic text summarization aims to produce a brief but crucial summary for the input documents. Both extractive and abstractive methods have witnessed great success in English datasets in recent years. However, there has been a minimal exploration of text summarization in Chinese, limited by the lack of large-scale datasets. In this paper, we present a large-scale Chinese news summarization dataset CNewSum, which consists of 304,307 documents and human-written summaries for the news feed. It has long documents with high-abstractive summaries, which can encourage document-level understanding and generation for current summarization models. An additional distinguishing feature of CNewSum is that its test set contains adequacy and deducibility annotations for the summaries. The adequacy level measures the degree of summary information covered by the document, and the deducibility indicates the reasoning ability the model needs to generate the summary. These annotations can help researchers analyze and target their model performance bottleneck. We examine recent methods on CNewSum and release our dataset to provide a solid testbed for automatic Chinese summarization research.

  Access Paper or Ask Questions

MIMICause : Defining, identifying and predicting types of causal relationships between biomedical concepts from clinical notes

Oct 14, 2021
Vivek Khetan, Md Imbesat Hassan Rizvi, Jessica Huber, Paige Bartusiak, Bogdan Sacaleanu, Andrew Fano

Understanding of causal narratives communicated in clinical notes can help make strides towards personalized healthcare. In this work, MIMICause, we propose annotation guidelines, develop an annotated corpus and provide baseline scores to identify types and direction of causal relations between a pair of biomedical concepts in clinical notes; communicated implicitly or explicitly, identified either in a single sentence or across multiple sentences. We annotate a total of 2714 de-identified examples sampled from the 2018 n2c2 shared task dataset and train four different language model based architectures. Annotation based on our guidelines achieved a high inter-annotator agreement i.e. Fleiss' kappa score of 0.72 and our model for identification of causal relation achieved a macro F1 score of 0.56 on test data. The high inter-annotator agreement for clinical text shows the quality of our annotation guidelines while the provided baseline F1 score sets the direction for future research towards understanding narratives in clinical texts.

  Access Paper or Ask Questions

Speech Summarization using Restricted Self-Attention

Oct 12, 2021
Roshan Sharma, Shruti Palaskar, Alan W Black, Florian Metze

Speech summarization is typically performed by using a cascade of speech recognition and text summarization models. End-to-end modeling of speech summarization models is challenging due to memory and compute constraints arising from long input audio sequences. Recent work in document summarization has inspired methods to reduce the complexity of self-attentions, which enables transformer models to handle long sequences. In this work, we introduce a single model optimized end-to-end for speech summarization. We apply the restricted self-attention technique from text-based models to speech models to address the memory and compute constraints. We demonstrate that the proposed model learns to directly summarize speech for the How-2 corpus of instructional videos. The proposed end-to-end model outperforms the previously proposed cascaded model by 3 points absolute on ROUGE. Further, we consider the spoken language understanding task of predicting concepts from speech inputs and show that the proposed end-to-end model outperforms the cascade model by 4 points absolute F-1.

* Submitted to ICASSP 2022 

  Access Paper or Ask Questions

COSMic: A Coherence-Aware Generation Metric for Image Descriptions

Sep 11, 2021
Mert İnan, Piyush Sharma, Baber Khalid, Radu Soricut, Matthew Stone, Malihe Alikhani

Developers of text generation models rely on automated evaluation metrics as a stand-in for slow and expensive manual evaluations. However, image captioning metrics have struggled to give accurate learned estimates of the semantic and pragmatic success of output text. We address this weakness by introducing the first discourse-aware learned generation metric for evaluating image descriptions. Our approach is inspired by computational theories of discourse for capturing information goals using coherence. We present a dataset of image$\unicode{x2013}$description pairs annotated with coherence relations. We then train a coherence-aware metric on a subset of the Conceptual Captions dataset and measure its effectiveness$\unicode{x2014}$its ability to predict human ratings of output captions$\unicode{x2014}$on a test set composed of out-of-domain images. We demonstrate a higher Kendall Correlation Coefficient for our proposed metric with the human judgments for the results of a number of state-of-the-art coherence-aware caption generation models when compared to several other metrics including recently proposed learned metrics such as BLEURT and BERTScore.

* 12 pages, 4 figures, Findings of the Association for Computational Linguistics: EMNLP 2021 

  Access Paper or Ask Questions

StarGANv2-VC: A Diverse, Unsupervised, Non-parallel Framework for Natural-Sounding Voice Conversion

Jul 23, 2021
Yinghao Aaron Li, Ali Zare, Nima Mesgarani

We present an unsupervised non-parallel many-to-many voice conversion (VC) method using a generative adversarial network (GAN) called StarGAN v2. Using a combination of adversarial source classifier loss and perceptual loss, our model significantly outperforms previous VC models. Although our model is trained only with 20 English speakers, it generalizes to a variety of voice conversion tasks, such as any-to-many, cross-lingual, and singing conversion. Using a style encoder, our framework can also convert plain reading speech into stylistic speech, such as emotional and falsetto speech. Subjective and objective evaluation experiments on a non-parallel many-to-many voice conversion task revealed that our model produces natural sounding voices, close to the sound quality of state-of-the-art text-to-speech (TTS) based voice conversion methods without the need for text labels. Moreover, our model is completely convolutional and with a faster-than-real-time vocoder such as Parallel WaveGAN can perform real-time voice conversion.


  Access Paper or Ask Questions

Guaranteeing Maximin Shares: Some Agents Left Behind

May 19, 2021
Hadi Hosseini, Andrew Searns

The maximin share (MMS) guarantee is a desirable fairness notion for allocating indivisible goods. While MMS allocations do not always exist, several approximation techniques have been developed to ensure that all agents receive a fraction of their maximin share. We focus on an alternative approximation notion, based on the population of agents, that seeks to guarantee MMS for a fraction of agents. We show that no optimal approximation algorithm can satisfy more than a constant number of agents, and discuss the existence and computation of MMS for all but one agent and its relation to approximate MMS guarantees. We then prove the existence of allocations that guarantee MMS for $\frac{2}{3}$ of agents, and devise a polynomial time algorithm that achieves this bound for up to nine agents. A key implication of our result is the existence of allocations that guarantee $\text{MMS}^{\lceil{3n/2}\rceil}$, i.e., the value that agents receive by partitioning the goods into $\lceil{\frac{3}{2}n}\rceil$ bundles, improving the best known guarantee of $\text{MMS}^{2n-2}$. Finally, we provide empirical experiments using synthetic data.

* Full version of a paper accepted to IJCAI 2021 

  Access Paper or Ask Questions

Training Value-Aligned Reinforcement Learning Agents Using a Normative Prior

Apr 19, 2021
Md Sultan Al Nahian, Spencer Frazier, Brent Harrison, Mark Riedl

As more machine learning agents interact with humans, it is increasingly a prospect that an agent trained to perform a task optimally, using only a measure of task performance as feedback, can violate societal norms for acceptable behavior or cause harm. Value alignment is a property of intelligent agents wherein they solely pursue non-harmful behaviors or human-beneficial goals. We introduce an approach to value-aligned reinforcement learning, in which we train an agent with two reward signals: a standard task performance reward, plus a normative behavior reward. The normative behavior reward is derived from a value-aligned prior model previously shown to classify text as normative or non-normative. We show how variations on a policy shaping technique can balance these two sources of reward and produce policies that are both effective and perceived as being more normative. We test our value-alignment technique on three interactive text-based worlds; each world is designed specifically to challenge agents with a task as well as provide opportunities to deviate from the task to engage in normative and/or altruistic behavior.

* (Nahian and Frazier contributed equally to this work) 

  Access Paper or Ask Questions

Emotion Classification in a Resource Constrained Language Using Transformer-based Approach

Apr 17, 2021
Avishek Das, Omar Sharif, Mohammed Moshiul Hoque, Iqbal H. Sarker

Although research on emotion classification has significantly progressed in high-resource languages, it is still infancy for resource-constrained languages like Bengali. However, unavailability of necessary language processing tools and deficiency of benchmark corpora makes the emotion classification task in Bengali more challenging and complicated. This work proposes a transformer-based technique to classify the Bengali text into one of the six basic emotions: anger, fear, disgust, sadness, joy, and surprise. A Bengali emotion corpus consists of 6243 texts is developed for the classification task. Experimentation carried out using various machine learning (LR, RF, MNB, SVM), deep neural networks (CNN, BiLSTM, CNN+BiLSTM) and transformer (Bangla-BERT, m-BERT, XLM-R) based approaches. Experimental outcomes indicate that XLM-R outdoes all other techniques by achieving the highest weighted $f_1$-score of $69.73\%$ on the test data. The dataset is publicly available at

* Accepted in NAACL-SRW 2021 

  Access Paper or Ask Questions