Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Text": models, code, and papers

DeepA2: A Modular Framework for Deep Argument Analysis with Pretrained Neural Text2Text Language Models

Oct 04, 2021
Gregor Betz, Kyle Richardson

In this paper, we present and implement a multi-dimensional, modular framework for performing deep argument analysis (DeepA2) using current pre-trained language models (PTLMs). ArgumentAnalyst -- a T5 model (Raffel et al. 2020) set up and trained within DeepA2 -- reconstructs argumentative texts, which advance an informal argumentation, as valid arguments: It inserts, e.g., missing premises and conclusions, formalizes inferences, and coherently links the logical reconstruction to the source text. We create a synthetic corpus for deep argument analysis, and evaluate ArgumentAnalyst on this new dataset as well as on existing data, specifically EntailmentBank (Dalvi et al. 2021). Our empirical findings vindicate the overall framework and highlight the advantages of a modular design, in particular its ability to emulate established heuristics (such as hermeneutic cycles), to explore the model's uncertainty, to cope with the plurality of correct solutions (underdetermination), and to exploit higher-order evidence.

  Access Paper or Ask Questions

VQA-MHUG: A Gaze Dataset to Study Multimodal Neural Attention in Visual Question Answering

Sep 27, 2021
Ekta Sood, Fabian Kögel, Florian Strohm, Prajit Dhar, Andreas Bulling

We present VQA-MHUG - a novel 49-participant dataset of multimodal human gaze on both images and questions during visual question answering (VQA) collected using a high-speed eye tracker. We use our dataset to analyze the similarity between human and neural attentive strategies learned by five state-of-the-art VQA models: Modular Co-Attention Network (MCAN) with either grid or region features, Pythia, Bilinear Attention Network (BAN), and the Multimodal Factorized Bilinear Pooling Network (MFB). While prior work has focused on studying the image modality, our analyses show - for the first time - that for all models, higher correlation with human attention on text is a significant predictor of VQA performance. This finding points at a potential for improving VQA performance and, at the same time, calls for further research on neural text attention mechanisms and their integration into architectures for vision and language tasks, including but potentially also beyond VQA.

* CoNLL 2021 

  Access Paper or Ask Questions

Preventing Author Profiling through Zero-Shot Multilingual Back-Translation

Sep 19, 2021
David Ifeoluwa Adelani, Miaoran Zhang, Xiaoyu Shen, Ali Davody, Thomas Kleinbauer, Dietrich Klakow

Documents as short as a single sentence may inadvertently reveal sensitive information about their authors, including e.g. their gender or ethnicity. Style transfer is an effective way of transforming texts in order to remove any information that enables author profiling. However, for a number of current state-of-the-art approaches the improved privacy is accompanied by an undesirable drop in the down-stream utility of the transformed data. In this paper, we propose a simple, zero-shot way to effectively lower the risk of author profiling through multilingual back-translation using off-the-shelf translation models. We compare our models with five representative text style transfer models on three datasets across different domains. Results from both an automatic and a human evaluation show that our approach achieves the best overall performance while requiring no training data. We are able to lower the adversarial prediction of gender and race by up to $22\%$ while retaining $95\%$ of the original utility on downstream tasks.

* Accepted to EMNLP 2021 (Main Conference), 9 pages 

  Access Paper or Ask Questions

StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators

Aug 02, 2021
Rinon Gal, Or Patashnik, Haggai Maron, Gal Chechik, Daniel Cohen-Or

Can a generative model be trained to produce images from a specific domain, guided by a text prompt only, without seeing any image? In other words: can an image generator be trained blindly? Leveraging the semantic power of large scale Contrastive-Language-Image-Pre-training (CLIP) models, we present a text-driven method that allows shifting a generative model to new domains, without having to collect even a single image from those domains. We show that through natural language prompts and a few minutes of training, our method can adapt a generator across a multitude of domains characterized by diverse styles and shapes. Notably, many of these modifications would be difficult or outright impossible to reach with existing methods. We conduct an extensive set of experiments and comparisons across a wide range of domains. These demonstrate the effectiveness of our approach and show that our shifted models maintain the latent-space properties that make generative models appealing for downstream tasks.

  Access Paper or Ask Questions

Graph Routing between Capsules

Jun 22, 2021
Yang Li, Wei Zhao, Erik Cambria, Suhang Wang, Steffen Eger

Routing methods in capsule networks often learn a hierarchical relationship for capsules in successive layers, but the intra-relation between capsules in the same layer is less studied, while this intra-relation is a key factor for the semantic understanding in text data. Therefore, in this paper, we introduce a new capsule network with graph routing to learn both relationships, where capsules in each layer are treated as the nodes of a graph. We investigate strategies to yield adjacency and degree matrix with three different distances from a layer of capsules, and propose the graph routing mechanism between those capsules. We validate our approach on five text classification datasets, and our findings suggest that the approach combining bottom-up routing and top-down attention performs the best. Such an approach demonstrates generalization capability across datasets. Compared to the state-of-the-art routing methods, the improvements in accuracy in the five datasets we used were 0.82, 0.39, 0.07, 1.01, and 0.02, respectively.

* Neural Network 2021 

  Access Paper or Ask Questions

Addressing the Vulnerability of NMT in Input Perturbations

Apr 20, 2021
Weiwen Xu, Ai Ti Aw, Yang Ding, Kui Wu, Shafiq Joty

Neural Machine Translation (NMT) has achieved significant breakthrough in performance but is known to suffer vulnerability to input perturbations. As real input noise is difficult to predict during training, robustness is a big issue for system deployment. In this paper, we improve the robustness of NMT models by reducing the effect of noisy words through a Context-Enhanced Reconstruction (CER) approach. CER trains the model to resist noise in two steps: (1) perturbation step that breaks the naturalness of input sequence with made-up words; (2) reconstruction step that defends the noise propagation by generating better and more robust contextual representation. Experimental results on Chinese-English (ZH-EN) and French-English (FR-EN) translation tasks demonstrate robustness improvement on both news and social media text. Further fine-tuning experiments on social media text show our approach can converge at a higher position and provide a better adaptation.

* Accepted by NAACL 2021 Industry Track 

  Access Paper or Ask Questions

Nutribullets Hybrid: Multi-document Health Summarization

Apr 08, 2021
Darsh J Shah, Lili Yu, Tao Lei, Regina Barzilay

We present a method for generating comparative summaries that highlights similarities and contradictions in input documents. The key challenge in creating such summaries is the lack of large parallel training data required for training typical summarization systems. To this end, we introduce a hybrid generation approach inspired by traditional concept-to-text systems. To enable accurate comparison between different sources, the model first learns to extract pertinent relations from input documents. The content planning component uses deterministic operators to aggregate these relations after identifying a subset for inclusion into a summary. The surface realization component lexicalizes this information using a text-infilling language model. By separately modeling content selection and realization, we can effectively train them with limited annotations. We implemented and tested the model in the domain of nutrition and health -- rife with inconsistencies. Compared to conventional methods, our framework leads to more faithful, relevant and aggregation-sensitive summarization -- while being equally fluent.

* NAACL 2021 Camera Ready 

  Access Paper or Ask Questions

Expressive Neural Voice Cloning

Jan 30, 2021
Paarth Neekhara, Shehzeen Hussain, Shlomo Dubnov, Farinaz Koushanfar, Julian McAuley

Voice cloning is the task of learning to synthesize the voice of an unseen speaker from a few samples. While current voice cloning methods achieve promising results in Text-to-Speech (TTS) synthesis for a new voice, these approaches lack the ability to control the expressiveness of synthesized audio. In this work, we propose a controllable voice cloning method that allows fine-grained control over various style aspects of the synthesized speech for an unseen speaker. We achieve this by explicitly conditioning the speech synthesis model on a speaker encoding, pitch contour and latent style tokens during training. Through both quantitative and qualitative evaluations, we show that our framework can be used for various expressive voice cloning tasks using only a few transcribed or untranscribed speech samples for a new speaker. These cloning tasks include style transfer from a reference speech, synthesizing speech directly from text, and fine-grained style control by manipulating the style conditioning variables during inference.

* 12 pages, 2 figures, 2 tables 

  Access Paper or Ask Questions

News Image Steganography: A Novel Architecture Facilitates the Fake News Identification

Jan 03, 2021
Jizhe Zhou, Chi-Man Pun, Yu Tong

A larger portion of fake news quotes untampered images from other sources with ulterior motives rather than conducting image forgery. Such elaborate engraftments keep the inconsistency between images and text reports stealthy, thereby, palm off the spurious for the genuine. This paper proposes an architecture named News Image Steganography (NIS) to reveal the aforementioned inconsistency through image steganography based on GAN. Extractive summarization about a news image is generated based on its source texts, and a learned steganographic algorithm encodes and decodes the summarization of the image in a manner that approaches perceptual invisibility. Once an encoded image is quoted, its source summarization can be decoded and further presented as the ground truth to verify the quoting news. The pairwise encoder and decoder endow images of the capability to carry along their imperceptible summarization. Our NIS reveals the underlying inconsistency, thereby, according to our experiments and investigations, contributes to the identification accuracy of fake news that engrafts untampered images.

  Access Paper or Ask Questions

Linear-Time WordPiece Tokenization

Dec 31, 2020
Xinying Song, Alex Salcianu, Yang Song, Dave Dopson, Denny Zhou

WordPiece tokenization is a subword-based tokenization schema adopted by BERT: it segments the input text via a longest-match-first tokenization strategy, known as Maximum Matching or MaxMatch. To the best of our knowledge, all published MaxMatch algorithms are quadratic (or higher). In this paper, we propose LinMaxMatch, a novel linear-time algorithm for MaxMatch and WordPiece tokenization. Inspired by the Aho-Corasick algorithm, we introduce additional linkages on top of the trie built from the vocabulary, allowing smart transitions when the trie matching cannot continue. Experimental results show that our algorithm is 3x faster on average than two production systems by HuggingFace and TensorFlow Text. Regarding long-tail inputs, our algorithm is 4.5x faster at the 95 percentile. This work has immediate practical value (reducing inference latency, saving compute resources, etc.) and is of theoretical interest by providing an optimal complexity solution to the decades-old MaxMatch problem.

  Access Paper or Ask Questions