Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Text": models, code, and papers

Topic Transferable Table Question Answering

Sep 15, 2021
Saneem Ahmed Chemmengath, Vishwajeet Kumar, Samarth Bharadwaj, Jaydeep Sen, Mustafa Canim, Soumen Chakrabarti, Alfio Gliozzo, Karthik Sankaranarayanan

Weakly-supervised table question-answering(TableQA) models have achieved state-of-art performance by using pre-trained BERT transformer to jointly encoding a question and a table to produce structured query for the question. However, in practical settings TableQA systems are deployed over table corpora having topic and word distributions quite distinct from BERT's pretraining corpus. In this work we simulate the practical topic shift scenario by designing novel challenge benchmarks WikiSQL-TS and WikiTQ-TS, consisting of train-dev-test splits in five distinct topic groups, based on the popular WikiSQL and WikiTableQuestions datasets. We empirically show that, despite pre-training on large open-domain text, performance of models degrades significantly when they are evaluated on unseen topics. In response, we propose T3QA (Topic Transferable Table Question Answering) a pragmatic adaptation framework for TableQA comprising of: (1) topic-specific vocabulary injection into BERT, (2) a novel text-to-text transformer generator (such as T5, GPT2) based natural language question generation pipeline focused on generating topic specific training data, and (3) a logical form reranker. We show that T3QA provides a reasonably good baseline for our topic shift benchmarks. We believe our topic split benchmarks will lead to robust TableQA solutions that are better suited for practical deployment.

* To appear at EMNLP 2021 

  Access Paper or Ask Questions

Deep Neural Networks Evolve Human-like Attention Distribution during Reading Comprehension

Jul 13, 2021
Jiajie Zou, Nai Ding

Attention is a key mechanism for information selection in both biological brains and many state-of-the-art deep neural networks (DNNs). Here, we investigate whether humans and DNNs allocate attention in comparable ways when reading a text passage to subsequently answer a specific question. We analyze 3 transformer-based DNNs that reach human-level performance when trained to perform the reading comprehension task. We find that the DNN attention distribution quantitatively resembles human attention distribution measured by fixation times. Human readers fixate longer on words that are more relevant to the question-answering task, demonstrating that attention is modulated by top-down reading goals, on top of lower-level visual and text features of the stimulus. Further analyses reveal that the attention weights in DNNs are also influenced by both top-down reading goals and lower-level stimulus features, with the shallow layers more strongly influenced by lower-level text features and the deep layers attending more to task-relevant words. Additionally, deep layers' attention to task-relevant words gradually emerges when pre-trained DNN models are fine-tuned to perform the reading comprehension task, which coincides with the improvement in task performance. These results demonstrate that DNNs can evolve human-like attention distribution through task optimization, which suggests that human attention during goal-directed reading comprehension is a consequence of task optimization.


  Access Paper or Ask Questions

On Attribution of Recurrent Neural Network Predictions via Additive Decomposition

Mar 27, 2019
Mengnan Du, Ninghao Liu, Fan Yang, Shuiwang Ji, Xia Hu

RNN models have achieved the state-of-the-art performance in a wide range of text mining tasks. However, these models are often regarded as black-boxes and are criticized due to the lack of interpretability. In this paper, we enhance the interpretability of RNNs by providing interpretable rationales for RNN predictions. Nevertheless, interpreting RNNs is a challenging problem. Firstly, unlike existing methods that rely on local approximation, we aim to provide rationales that are more faithful to the decision making process of RNN models. Secondly, a flexible interpretation method should be able to assign contribution scores to text segments of varying lengths, instead of only to individual words. To tackle these challenges, we propose a novel attribution method, called REAT, to provide interpretations to RNN predictions. REAT decomposes the final prediction of a RNN into additive contribution of each word in the input text. This additive decomposition enables REAT to further obtain phrase-level attribution scores. In addition, REAT is generally applicable to various RNN architectures, including GRU, LSTM and their bidirectional versions. Experimental results demonstrate the faithfulness and interpretability of the proposed attribution method. Comprehensive analysis shows that our attribution method could unveil the useful linguistic knowledge captured by RNNs. Some analysis further demonstrates our method could be utilized as a debugging tool to examine the vulnerability and failure reasons of RNNs, which may lead to several promising future directions to promote generalization ability of RNNs.

* The 2019 Web Conference (WWW 2019) 

  Access Paper or Ask Questions

Large-scale Bilingual Language-Image Contrastive Learning

Apr 15, 2022
Byungsoo Ko, Geonmo Gu

This paper is a technical report to share our experience and findings building a Korean and English bilingual multimodal model. While many of the multimodal datasets focus on English and multilingual multimodal research uses machine-translated texts, employing such machine-translated texts is limited to describing unique expressions, cultural information, and proper noun in languages other than English. In this work, we collect 1.1 billion image-text pairs (708 million Korean and 476 million English) and train a bilingual multimodal model named KELIP. We introduce simple yet effective training schemes, including MAE pre-training and multi-crop augmentation. Extensive experiments demonstrate that a model trained with such training schemes shows competitive performance in both languages. Moreover, we discuss multimodal-related research questions: 1) strong augmentation-based methods can distract the model from learning proper multimodal relations; 2) training multimodal model without cross-lingual relation can learn the relation via visual semantics; 3) our bilingual KELIP can capture cultural differences of visual semantics for the same meaning of words; 4) a large-scale multimodal model can be used for multimodal feature analogy. We hope that this work will provide helpful experience and findings for future research. We provide an open-source pre-trained KELIP.

* Accepted by ICLRW2022 

  Access Paper or Ask Questions

Show Me What and Tell Me How: Video Synthesis via Multimodal Conditioning

Mar 04, 2022
Ligong Han, Jian Ren, Hsin-Ying Lee, Francesco Barbieri, Kyle Olszewski, Shervin Minaee, Dimitris Metaxas, Sergey Tulyakov

Most methods for conditional video synthesis use a single modality as the condition. This comes with major limitations. For example, it is problematic for a model conditioned on an image to generate a specific motion trajectory desired by the user since there is no means to provide motion information. Conversely, language information can describe the desired motion, while not precisely defining the content of the video. This work presents a multimodal video generation framework that benefits from text and images provided jointly or separately. We leverage the recent progress in quantized representations for videos and apply a bidirectional transformer with multiple modalities as inputs to predict a discrete video representation. To improve video quality and consistency, we propose a new video token trained with self-learning and an improved mask-prediction algorithm for sampling video tokens. We introduce text augmentation to improve the robustness of the textual representation and diversity of generated videos. Our framework can incorporate various visual modalities, such as segmentation masks, drawings, and partially occluded images. It can generate much longer sequences than the one used for training. In addition, our model can extract visual information as suggested by the text prompt, e.g., "an object in image one is moving northeast", and generate corresponding videos. We run evaluations on three public datasets and a newly collected dataset labeled with facial attributes, achieving state-of-the-art generation results on all four.

* Accepted to CVPR 2022 

  Access Paper or Ask Questions

Delivery Issues Identification from Customer Feedback Data

Dec 26, 2021
Ankush Chopra, Mahima Arora, Shubham Pandey

Millions of packages are delivered successfully by online and local retail stores across the world every day. The proper delivery of packages is needed to ensure high customer satisfaction and repeat purchases. These deliveries suffer various problems despite the best efforts from the stores. These issues happen not only due to the large volume and high demand for low turnaround time but also due to mechanical operations and natural factors. These issues range from receiving wrong items in the package to delayed shipment to damaged packages because of mishandling during transportation. Finding solutions to various delivery issues faced by both sending and receiving parties plays a vital role in increasing the efficiency of the entire process. This paper shows how to find these issues using customer feedback from the text comments and uploaded images. We used transfer learning for both Text and Image models to minimize the demand for thousands of labeled examples. The results show that the model can find different issues. Furthermore, it can also be used for tasks like bottleneck identification, process improvement, automating refunds, etc. Compared with the existing process, the ensemble of text and image models proposed in this paper ensures the identification of several types of delivery issues, which is more suitable for the real-life scenarios of delivery of items in retail businesses. This method can supply a new idea of issue detection for the delivery of packages in similar industries.

* Accepted to be part of MLDS 2022, and will be Published in Lattice journal 

  Access Paper or Ask Questions

Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos

Mar 26, 2022
Muheng Li, Lei Chen, Yueqi Duan, Zhilan Hu, Jianjiang Feng, Jie Zhou, Jiwen Lu

Action recognition models have shown a promising capability to classify human actions in short video clips. In a real scenario, multiple correlated human actions commonly occur in particular orders, forming semantically meaningful human activities. Conventional action recognition approaches focus on analyzing single actions. However, they fail to fully reason about the contextual relations between adjacent actions, which provide potential temporal logic for understanding long videos. In this paper, we propose a prompt-based framework, Bridge-Prompt (Br-Prompt), to model the semantics across adjacent actions, so that it simultaneously exploits both out-of-context and contextual information from a series of ordinal actions in instructional videos. More specifically, we reformulate the individual action labels as integrated text prompts for supervision, which bridge the gap between individual action semantics. The generated text prompts are paired with corresponding video clips, and together co-train the text encoder and the video encoder via a contrastive approach. The learned vision encoder has a stronger capability for ordinal-action-related downstream tasks, e.g. action segmentation and human activity recognition. We evaluate the performances of our approach on several video datasets: Georgia Tech Egocentric Activities (GTEA), 50Salads, and the Breakfast dataset. Br-Prompt achieves state-of-the-art on multiple benchmarks. Code is available at https://github.com/ttlmh/Bridge-Prompt

* Accepted to CVPR 2022 

  Access Paper or Ask Questions

Can Open Domain Question Answering Systems Answer Visual Knowledge Questions?

Feb 09, 2022
Jiawen Zhang, Abhijit Mishra, Avinesh P. V. S, Siddharth Patwardhan, Sachin Agarwal

The task of Outside Knowledge Visual Question Answering (OKVQA) requires an automatic system to answer natural language questions about pictures and images using external knowledge. We observe that many visual questions, which contain deictic referential phrases referring to entities in the image, can be rewritten as "non-grounded" questions and can be answered by existing text-based question answering systems. This allows for the reuse of existing text-based Open Domain Question Answering (QA) Systems for visual question answering. In this work, we propose a potentially data-efficient approach that reuses existing systems for (a) image analysis, (b) question rewriting, and (c) text-based question answering to answer such visual questions. Given an image and a question pertaining to that image (a visual question), we first extract the entities present in the image using pre-trained object and scene classifiers. Using these detected entities, the visual questions can be rewritten so as to be answerable by open domain QA systems. We explore two rewriting strategies: (1) an unsupervised method using BERT for masking and rewriting, and (2) a weakly supervised approach that combines adaptive rewriting and reinforcement learning techniques to use the implicit feedback from the QA system. We test our strategies on the publicly available OKVQA dataset and obtain a competitive performance with state-of-the-art models while using only 10% of the training data.

* 9 pages (including references), 5 figures 

  Access Paper or Ask Questions

Hierarchical Neural Network Approaches for Long Document Classification

Jan 18, 2022
Snehal Khandve, Vedangi Wagh, Apurva Wani, Isha Joshi, Raviraj Joshi

Text classification algorithms investigate the intricate relationships between words or phrases and attempt to deduce the document's interpretation. In the last few years, these algorithms have progressed tremendously. Transformer architecture and sentence encoders have proven to give superior results on natural language processing tasks. But a major limitation of these architectures is their applicability for text no longer than a few hundred words. In this paper, we explore hierarchical transfer learning approaches for long document classification. We employ pre-trained Universal Sentence Encoder (USE) and Bidirectional Encoder Representations from Transformers (BERT) in a hierarchical setup to capture better representations efficiently. Our proposed models are conceptually simple where we divide the input data into chunks and then pass this through base models of BERT and USE. Then output representation for each chunk is then propagated through a shallow neural network comprising of LSTMs or CNNs for classifying the text data. These extensions are evaluated on 6 benchmark datasets. We show that USE + CNN/LSTM performs better than its stand-alone baseline. Whereas the BERT + CNN/LSTM performs on par with its stand-alone counterpart. However, the hierarchical BERT models are still desirable as it avoids the quadratic complexity of the attention mechanism in BERT. Along with the hierarchical approaches, this work also provides a comparison of different deep learning algorithms like USE, BERT, HAN, Longformer, and BigBird for long document classification. The Longformer approach consistently performs well on most of the datasets.

* Accepted at International Conference on Machine Learning and Computing (ICMLC) 2022 

  Access Paper or Ask Questions

<<
512
513
514
515
516
517
518
519
520
521
522
523
524
>>